Project description:The pandemic associated with Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV2) and its disease named COVID-19 challenged the scientific community to discover effective therapeutic solutions in a short period. Repurposing existing drugs is one viable approach that emphasizes speed during these urgent times. Famotidine, a class A G protein-coupled receptor antagonist used for the treatment of gastroesophageal reflux was recently identified in an in silico screening. Additionally, a recent retrospective clinical report showed that the treatment with famotidine provided a good outcome in patients infected with SARS-CoV2. A clinical trial testing effectiveness of famotidine in combination with hydroxychloroquine is currently ongoing in the United States (US). In the 1990s, famotidine was described as an antiviral agent against human immunodeficiency virus (HIV). Interestingly, some HIV protease inhibitors are presently being used against SARS-CoV2. However, it is not clear if famotidine could be effective against SARS-CoV2. Thus, by using a computational analysis, we aimed to examine if the antiviral effect of famotidine could be related to the inhibition of proteases involved in the virus replication. Our results showed that famotidine could interact within the catalytic site of the three proteases associated with SARS-CoV2 replication. However, weak binding affinity of famotidine to these proteases suggests that a successful famotidine therapy could likely be achieved only in combination with other antiviral drugs. Finally, analysis of famotidine's pharmacokinetic parameters indicated that its effect against SARS-CoV2 infection could be reached only upon intravenous administration. This work will contribute to the pharmacological knowledge of famotidine as an antiviral agent against SARS-CoV2.
Project description:Probiotic bacteria have been associated with various health benefits and included in overwhelming number of foods. Today, probiotic supplements are consumed with increasing regularity and record a rapidly growing economic value. With billions of heterogeneous populations of probiotics per serving, probiotic supplements contain the largest quantity of probiotics across all functional foods. They often carry antibiotic-resistant determinants that can be transferred to and accumulate in resident bacteria of the gastrointestinal tract and risk their acquisitions by opportunistic pathogens. While the health benefits of probiotics have been widely publicized, this health risk, however, is underrepresented in both scientific studies and public awareness. On the other hand, the human gut presents conditions that are unfavorable for bacteria, including probiotics. It remains uncertain if probiotics from supplements can tolerate acids and bile salts that may undermine their effectiveness in conferring health benefits. Here, we put into perspective the perceived health benefits and the long-term safety of consuming probiotic supplements, specifically bringing intolerance to acids and bile salts, and the long-standing issue of antibiotic-resistant gene transfer into sharp focus. We report that probiotics from supplements examined in this study have poor tolerance to acids and bile salts while also displaying resistance to multiple antibiotics. They could also adapt and gain resistance to streptomycin in vitro. In an environment where consuming supplements is considered a norm, our results and that of others will put in perspective the persisting concerns surrounding probiotic supplements so that the current hype does not overpower the hope.
Project description:The antibody molecule is modular and separate domains can be extracted through biochemical or genetic means. It is clear from review of the literature that a wave of novel, antigen-specific molecular forms may soon enter clinical evaluation. This report examines the developmental histories of therapeutics derived from antigen-specific fragments of antibodies produced by recombinant processes. Three general types of fragments were observed, antigen-binding fragments (Fab), single chain variable fragments (scFv) and "third generation" (3G), each representing a successive wave of antibody fragment technology. In parallel, drug developers have explored multi-specificity and conjugation with exogenous functional moieties in all three fragment types. Despite high hopes and an active pipeline, enthusiasm for differentiating performance of fragments should, perhaps, be tempered as there are yet few data that suggest these molecules have distinct clinical properties due only to their size.
Project description:COVID-19 is a serious viral infection that struck the world in December 2019 starting from Wuhan in China, spreading subsequently to all over the world. The disease has baffled scientists and doctors worldwide in terms of its presentation, behaviour, and treatment options till now. A low mortality rate is the only relief we get so far from COVID-19 in terms of numbers. Treatment options have gradually streamlined to steroids and very few FDA approved antiviral as well as plasma therapy and supportive treatment. Monoclonal antibodies are used to tide over any impending cytokine storm but are not equally effective in all patients. Ventilation support is invariably required for moderate to severe disease varying from a simple High Flow non-rebreathing mask to BiPAP (Bilevel Positive Airway Pressure) and HFNO (High-Flow Nasal Oxygen) extending to full-fledge ventilation via a Mechanical Ventilator. Because of the non-availability of satisfactory treatment so far, many researchers from different biomedical fields are looking for alternative therapeutic strategies to manage the pandemic. One such therapeutic approach showing a ray of hope to combat COVID-19 infection is Mesenchymal stem cell therapy. Mesenchymal cells have immunomodulatory, anti-inflammatory as well as regenerative properties and various preliminary studies have shown that MSCs can reverse the lung damage and overcome the cytokine storm incited by COVID-19 infection. Also, it has improved the recovery rate of critically ill patients on mechanical ventilation. In this review, we will discuss the possibility and relevance of MSCs in COVID-19 treatment and preview of various MSCs clinical trials.
Project description:Background: The possibility of cannabidiol (CBD) to be used as an antiviral or to treat viral diseases has received limited attention so far, despite the growing number of claims that CBD could be used for the treatment of viral infection-related conditions. Aim and Methods: Therefore, we systematically retrieved and critically evaluated the scientific literature available on PubMed and the claims on the Internet, to assess the current state of knowledge on the use of CBD in viral diseases, and to provide suggestions for future research directions. Results: PubMed search referenced two original articles supporting the use of CBD for the treatment of hepatitis C and Kaposi sarcoma and one article reporting the ability of CBD to reduce neuroinflammation in a virus-induced animal model of multiple sclerosis. Internet search found 25 websites claiming more indications for CBD. Remarkably, those claims were provided mostly by commercial websites and were not supported by appropriate scientific references. Conclusion: Although preclinical studies suggest the potential effectiveness of CBD in viral diseases such as hepatitis C and Kaposi sarcoma, clinical evidence is still lacking. Anecdotal experiences of CBD use retrieved on the Internet, on the other side, lack any support from sound scientific evidence, although they might in some cases provide suggestions for conditions associated with viral infections that may deserve proper assessment in well-designed clinical trials.
Project description:The past 15 years have seen a boom in the use and integration of 'omic' approaches (limited here to genomic, transcriptomic, and epigenomic techniques) to study neurodegenerative disease in an unprecedented way. We first highlight advances in and the limitations of using such approaches in the neurodegenerative disease literature, with a focus on Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). We next discuss how these studies can advance human health in the form of generating leads for downstream mechanistic investigation or yielding polygenic risk scores (PRSs) for prognostication. However, we argue that these approaches constitute a new form of molecular description, analogous to clinical or pathological description, that alone does not hold the key to solving these complex diseases.
Project description:Chronic back pain is a common disability, which is often accredited to intervertebral disc degeneration. Gold standard interventions such as spinal fusion, which are mainly designed to mechanically seal the defect, frequently fail to restore the native biomechanics. Moreover, artificial implants have limited success as a repair strategy, as they do not alter the underlying disease and fail to promote tissue integration and subsequent native biomechanics. The reported high rates of spinal fusion and artificial disc implant failure have pushed intervertebral disc degeneration research in recent years towards repair strategies. Intervertebral disc repair utilizing principles of tissue engineering should theoretically be successful, overcoming the inadequacies of artificial implants. For instance, advances in the development of scaffolds aided with cells and growth factors have opened up new possibilities for repair strategies. However, none has reached the stage of clinical trials in humans. In this review, we describe the hitches encountered in the musculoskeletal field and summarize recent advances in designing tissue-engineered constructs for promoting nucleus pulposus repair. Additionally, the review focuses on the effect of biomaterial aided with cells and growth factors on achieving effective functional reparative potency, highlighting the ways to enhance the efficacy of these treatments.
Project description:Forest insects are emerging in large extension in response to ongoing climatic changes, penetrating geographic barriers, utilizing novel hosts, and influencing many hectares of conifer forests worldwide. Current management strategies have been unable to keep pace with forest insect population outbreaks, and therefore novel and aggressive management strategies are urgently required to manage forest insects. RNA interference (RNAi), a Noble Prize-winning discovery, is an emerging approach that can be used for forest protection. The RNAi pathway is triggered by dsRNA molecules, which, in turn, silences genes and disrupts protein function, ultimately causing the death of the targeted insect. RNAi is very effective against pest insects; however, its proficiency varies significantly among insect species, tissues, and genes. The coleopteran forest insects are susceptible to RNAi and can be the initial target, but we lack practical means of delivery, particularly in systems with long-lived, endophagous insects such as the Emerald ash borer, Asian longhorn beetles, and bark beetles. The widespread use of RNAi in forest pest management has major challenges, including its efficiency, target gene selection, dsRNA design, lack of reliable dsRNA delivery methods, non-target and off-target effects, and potential resistance development in wood-boring pest populations. This review focuses on recent innovations in RNAi delivery that can be deployed against forest pests, such as cationic liposome-assisted (lipids), nanoparticle-enabled (polymers or peptides), symbiont-mediated (fungi, bacteria, and viruses), and plant-mediated deliveries (trunk injection, root absorption). Our findings guide future risk analysis of dsRNA-based forest protection products (FPPs) and risk assessment frameworks incorporating sequence complementarity-based analysis for off-target predictions. This review also points out barriers to further developing RNAi for forest pest management and suggests future directions of research that will build the future use of RNAi against wood-boring coleopterans.
Project description:Caco2 cells were pretreated with 100µM histamine and 50µM Famotidine for 12h followed by infection with SARS-CoV2 for 24h. After that proteome was analysed.