Unknown

Dataset Information

0

Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications.


ABSTRACT: Precisely ordered arrays of InAs quantum dots are formed on a nanoisland-structured GaAs (100) surface using in situ laser interference during self-assembled molecular beam epitaxial growth. Nanoislands induced by single-pulse four-beam laser interference act as preferential nucleation sites for InAs quantum dots and result in site occupation dependent on the size of nanoislands, the InAs coverage, and the laser parameters. By optimizing the growth and interference conditions, regular dense ordering of single dots was obtained for the first time using this in situ noninvasive approach. The photoluminescence spectra of the resulting quantum dot arrays with a period of 300 nm show good optical quality and uniformity. This technique paves the way for the rapid large-scale fabrication of arrays of single dots to enable quantum information technology device platforms.

SUBMITTER: Wang YR 

PROVIDER: S-EPMC7304857 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Precise Arrays of Epitaxial Quantum Dots Nucleated by In Situ Laser Interference for Quantum Information Technology Applications.

Wang Yun Ran YR   Han Im Sik IS   Jin Chao-Yuan CY   Hopkinson Mark M  

ACS applied nano materials 20200420 5


Precisely ordered arrays of InAs quantum dots are formed on a nanoisland-structured GaAs (100) surface using in situ laser interference during self-assembled molecular beam epitaxial growth. Nanoislands induced by single-pulse four-beam laser interference act as preferential nucleation sites for InAs quantum dots and result in site occupation dependent on the size of nanoislands, the InAs coverage, and the laser parameters. By optimizing the growth and interference conditions, regular dense orde  ...[more]

Similar Datasets

| S-EPMC7000696 | biostudies-literature
| S-EPMC4354043 | biostudies-literature
| S-EPMC11342363 | biostudies-literature
| S-EPMC4569794 | biostudies-literature
2021-01-30 | GSE165805 | GEO
| S-EPMC7558330 | biostudies-literature
| S-EPMC4999264 | biostudies-literature
| S-EPMC4840388 | biostudies-literature
| S-EPMC11372134 | biostudies-literature
| S-EPMC7214519 | biostudies-literature