Unknown

Dataset Information

0

Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization.


ABSTRACT: Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic ?-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic character associated with histidines affect the permeabilization properties of p1 and p3. First, we show that the permeabilization ability of p3, but not p1, is strongly inhibited at pH 6.0 when the conserved histidines are partially charged and H17 is predominantly neutral. Second, our neutron diffraction measurements performed at low water content and neutral pH indicate that the average conformation of p1 is highly tilted, with its C-terminus extending into the opposite leaflet. In contrast, p3 is surface bound with its N-terminal end tilted toward the bilayer interior. The deeper membrane insertion of p1 correlates with its behavior at full hydration: an enhanced ability to tilt, bury its histidines and C-terminus, induce membrane thinning and defects, and alter membrane conductance and viscoelastic properties. Furthermore, its pH-resiliency relates to the neutral state favored by H17. Overall, these results provide mechanistic insights into how differences in the histidine content and amphipathicity of peptides can elicit different directionality of membrane insertion and pH-dependent permeabilization. This work features complementary methods, including dye leakage assays, NMR-monitored titrations, X-ray and neutron diffraction, oriented CD, molecular dynamics, electrochemical impedance spectroscopy, surface plasmon resonance, and quartz crystal microbalance with dissipation.

SUBMITTER: Mihailescu M 

PROVIDER: S-EPMC7312726 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structure and Function in Antimicrobial Piscidins: Histidine Position, Directionality of Membrane Insertion, and pH-Dependent Permeabilization.

Mihailescu Mihaela M   Sorci Mirco M   Seckute Jolita J   Silin Vitalii I VI   Hammer Janet J   Perrin B Scott BS   Hernandez Jorge I JI   Smajic Nedzada N   Shrestha Akritee A   Bogardus Kimberly A KA   Greenwood Alexander I AI   Fu Riqiang R   Blazyk Jack J   Pastor Richard W RW   Nicholson Linda K LK   Belfort Georges G   Cotten Myriam L ML  

Journal of the American Chemical Society 20190613 25


Piscidins are histidine-enriched antimicrobial peptides that interact with lipid bilayers as amphipathic α-helices. Their activity at acidic and basic pH in vivo makes them promising templates for biomedical applications. This study focuses on p1 and p3, both 22-residue-long piscidins with 68% sequence identity. They share three histidines (H3, H4, and H11), but p1, which is significantly more permeabilizing, has a fourth histidine (H17). This study investigates how variations in amphipathic cha  ...[more]

Similar Datasets

| S-EPMC2955508 | biostudies-literature
| S-EPMC1221212 | biostudies-other
| S-EPMC5607044 | biostudies-literature
| S-EPMC5685674 | biostudies-literature
| S-EPMC6275479 | biostudies-literature
| S-EPMC3434130 | biostudies-literature
| S-EPMC4518280 | biostudies-literature
| S-EPMC2909462 | biostudies-literature
| S-EPMC6721965 | biostudies-literature
| S-EPMC4491704 | biostudies-literature