Project description:Genome-wide association studies (GWAS) have identified over 100 loci containing single nucleotide variants (SNVs) that influence the risk of developing multiple sclerosis (MS). Most of these loci lie in non-coding regulatory regions of the genome that are active in immune cells and are therefore thought to modify risk by altering the expression of key immune genes. To explore this hypothesis we screened genes flanking MS-associated variants for evidence of allele specific expression (ASE) by quantifying the transcription of coding variants in linkage disequilibrium with MS-associated SNVs. In total, we were able to identify and successfully analyse 200 such coding variants (from 112 genes) in both CD4+ and CD8+ T cells from 106 MS patients and 105 controls. Fifty-six of these coding variants (from 43 genes) showed statistically significant evidence of ASE in one or both cell types. In the Lck interacting transmembrane adaptor 1 gene (LIME1), for example, we were able to show that in both cell types, the MS-associated variant rs2256814 increased the expression of some transcripts while simultaneously reducing the expression of other transcripts. In CD4+ cells from an additional independent set of 96 cases and 93 controls we were able to replicate the effect of this SNV on the balance of alternate LIME1 transcripts using qPCR (p = 5 × 10-24). Our data thus indicate that some of the MS-associated SNVs identified by GWAS likely exert their effects on risk by distorting the balance of alternate transcripts rather than by changing the overall level of gene expression.
Project description:We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.
Project description:To apply quantitative susceptibility mapping (QSM) in the basal ganglia of patients with multiple sclerosis (MS) and relate the findings to R2* mapping with regard to the sensitivity for clinical and morphologic measures of disease severity.The local ethics committee approved this study, and all subjects gave written informed consent. Sixty-eight patients (26 with clinically isolated syndrome, 42 with relapsing-remitting MS) and 23 control subjects underwent 3-T magnetic resonance (MR) imaging. Susceptibility and R2* maps were reconstructed from the same three-dimensional multiecho spoiled gradient-echo sequence. Mean susceptibilities and R2* rates were measured in the basal ganglia and were compared between different phenotypes of the disease (clinically isolated syndrome, MS) and the control subjects by using analysis of variance, and regressing analysis was used to identify independent predictors.Compared with control subjects, patients with MS and clinically isolated syndrome had increased (more paramagnetic) magnetic susceptibilities in the basal ganglia. R2* mapping proved less sensitive than QSM regarding group differences. The strongest predictor of magnetic susceptibility was age. Susceptibilities were higher with increasing neurologic deficits (r = 0.34, P < .01) and lower with normalized volumes of gray matter (r = -0.35, P < .005) and the cortex (r = -0.35, P < .005).QSM provides superior sensitivity over R2* mapping in the detection of MS-related tissue changes in the basal ganglia. With QSM but not with R2* mapping, changes were already observed in patients with clinically isolated syndrome, which suggests that QSM can serve as a sensitive measure at the earliest stage of the disease.
Project description:Smoking is one of the most established risk factors for multiple sclerosis (MS). The aim of this study was to investigate how age at smoking debut, duration, intensity and cumulative dose of smoking, and smoking cessation influence the association between smoking and MS risk. In two Swedish population-based case-control studies (7,883 cases, 9,264 controls), subjects with different smoking habits were compared regarding MS risk, by calculating odds ratios with 95% confidence intervals. We observed a clear dose response association between cumulative dose of smoking and MS risk (p value for trend <10(-35)). Both duration and intensity of smoking contributed independently to the increased risk of MS. However, the detrimental effect of smoking abates a decade after smoking cessation regardless of the cumulative dose of smoking. Age at smoking debut did not affect the association between smoking and MS. Smoking increases the risk of MS in a dose response manner. However, in contrary to several other risk factors for MS that seem to affect the risk only if the exposure takes place during a specific period in life, smoking affects MS risk regardless of age at exposure, and the detrimental effect slowly abates after smoking cessation.
Project description:Multiple sclerosis (MS) is characterized by an immune system attack targeting myelin, which is produced by oligodendrocytes (OLs). We performed single-cell transcriptomic analysis of OL lineage cells from the spinal cord of mice induced with experimental autoimmune encephalomyelitis (EAE), which mimics several aspects of MS. We found unique OLs and OL precursor cells (OPCs) in EAE and uncovered several genes specifically alternatively spliced in these cells. Surprisingly, EAE-specific OL lineage populations expressed genes involved in antigen processing and presentation via major histocompatibility complex class I and II (MHC-I and -II), and in immunoprotection, suggesting alternative functions of these cells in a disease context. Importantly, we found that disease-specific oligodendroglia are also present in human MS brains and that a substantial number of genes known to be susceptibility genes for MS, so far mainly associated with immune cells, are expressed in the OL lineage cells. Finally, we demonstrate that OPCs can phagocytose and that MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. Our results suggest that OLs and OPCs are not passive targets but instead active immunomodulators in MS. The disease-specific OL lineage cells, for which we identify several biomarkers, may represent novel direct targets for immunomodulatory therapeutic approaches in MS.
Project description:We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses.
Project description:BackgroundSusceptibility MRI techniques, such as phase and quantitative susceptibility mapping (QSM) reveal lesion heterogeneity in MS, including the presence of lesions with outer rims suggestive of iron accumulation in macrophages and microglia, indicative of chronic-active inflammatory white matter lesions (WMLs).ObjectiveTo evaluate the in vivo relationship between chronic-active WMLs (as visualized by rimmed lesions on QSM) and several clinical metrics.Methods39 patients (15 men, 24 women) with MS underwent 7 Tesla brain MRIs and clinical evaluation. Contrast patterns of lesions identified on FLAIR and quantitative susceptibility maps were reviewed and compared to demographic characteristics and disability scores.Results1279 lesions were identified on FLAIR MRI; 846 (66.2%) of these were visible on QSM, 119 (14.1%) of which had visible rims. Lesions visible on QSM were more likely to have rims in men (16.1%, vs 4.9% in women, p=0.009). In a logistic regression model accounting for several factors, male sex conferred a >10-fold risk of having ≥1 rimmed lesion(s) (p=0.026).ConclusionOur findings provide in vivo support for the body of histopathologic literature indicating sex-specific differences in MS WML formation and suggest that QSM can be used to study these sex differences in the future.
Project description:Multiple sclerosis (MS) is an autoimmune demyelinating disease characterized by complex genetics and multifaceted gene-environment interactions. Compared to whites, African Americans have a lower risk for developing MS, but African Americans with MS have a greater risk of disability. These differences between African Americans and whites may represent differences in genetic susceptibility and/or environmental factors. SNPs from 12 candidate genes have recently been identified and validated with MS risk in white populations. We performed a replication study using 918 cases and 656 unrelated controls to test whether these candidate genes are also associated with MS risk in African Americans. CD6, CLEC16a, EVI5, GPC5, and TYK2 contained SNPs that are associated with MS risk in the African American data set. EVI5 showed the strongest association outside the major histocompatibility complex (rs10735781, OR=1.233, 95% CI=1.06-1.43, P-value=0.006). In addition, RGS1 seems to affect age of onset whereas TNFRSF1A seems to be associated with disease progression. None of the tested variants showed results that were statistically inconsistent with the effects established in whites. The results are consistent with shared disease genetic mechanisms among individuals of European and African ancestry.
Project description:ObjectiveTo explore the nature of genetic-susceptibility to multiple sclerosis (MS) in African-Americans.BackgroundRecently, the number of genetic-associations with MS has exploded although the MS-associations of specific haplotypes within the major histocompatibility complex (MHC) have been known for decades. For example, the haplotypes HLA-DRB1*15:01~HLA-DQB1*06:02, and HLA-DRB1*03:01~ HLA-DQB1*02:01 have odds ratios (ORs) for an MS-association orders of magnitude stronger than many of these newly-discovered associations. Nevertheless, all these haplotypes are part of much larger conserved extended haplotypes (CEHs), which span both the Class I and Class II MHC regions. African-Americans are at greater risk of developing MS compared to a native Africans but at lesser risk compared to Europeans. It is the purpose of this manuscript to explore the relationship between MS-susceptibility and the CEH make-up of our African-American cohort.Design/methodsThe African-American (AA) cohort consisted of 1,305 patients with MS and 1,155 controls, who self-identified as being African-American. For comparison, we used the 18,492 controls and 11,144 MS-cases from the predominantly European Wellcome Trust Case Control Consortium (WTCCC) and the 28,557 phased native Africans from the multinational "Be the Match" registry. The WTCCC and the African-Americans were phased at each of five HLA loci (HLA-A, HLA-C, HLA-B, HLA-DRB1 and HLA-DQB1) and the at 11 SNPs (10 of which were in non-coding regions) surrounding the Class II region of the DRB1 gene using previously-published probabilistic phasing algorithms.ResultsOf the 32 most frequent CEHs, 18 (56%) occurred either more frequently or exclusively in Africans) whereas 9 (28%) occurred more frequently or exclusively in Europeans. The remaining 5 CEHs occurred in neither control group although, likely, these were African in origin. Eight of these CEHs carried the DRB1*15:03~DQB1*06:02~a36 haplotype and three carried the DRB1*15:01~DQB1*06:02~a1 haplotype. In African Americans, a single-copy of the European CEH (03:01_07:02_07:02_15:01_06:02_a1) was associated with considerable MS-risk (OR = 3.30; p = 0.0001)-similar to that observed in the WTCCC (OR = 3.25; p<10-168). By contrast, the MS-risk for the European CEH (02:01_07:02_07:02_15:01_06:02_a1) was less (OR = 1.49; ns)-again, similar to the WTCCC (OR = 2.2; p<10-38). Moreover, four African haplotypes were "protective" relative to a neutral reference, to three European CEHs, and also to the five other African CEHs.ConclusionsThe common CEHs in African Americans are divisible into those that are either African or European in origin, which are derived without modification from their source population. European CEHs, linked to MS-risk, in general, had similar impacts in African-Americans as they did in Europeans. By contrast, African CEHs had mixed MS-risks. For a few, the MS-risk exceeded that in a neutral-reference group whereas, for many others, these CEHs were "protective"-perhaps providing a partial rationale for the lower MS-risk in African-Americans compared to European-Americans.
Project description:Since the first approved parenteral drug for the treatment of multiple sclerosis (MS) in 1993 (interferon [IFN] beta, and later glatiramer acetate [GA]), today there are both parenteral and oral treatment options for MS. After IFN beta preparations, glatiramer acetate was developed; and, until the approval of natalizumab in 2006, those dominated the treatment of MS. Later on, among oral drug options, cladribine made a promising entry; however, due to safety concerns, it was withdrawn soon. Afterwards, with the understanding of the role of sphingosine-1 phosphate (S1P) receptors in the pathogenesis of MS, fingolimod was approved in 2010, which was followed by other oral agents such as teriflunomide and dimethyl fumarate. Recently newer IV treatment options such as alemtuzumab, rituximab and ocrelizumab have widened the treatment arena. Recently, after submitting new efficacy and safety data, cladribine was approved for MS by EMA, in 2017. Moreover, seven years after its rejection due to safety reasons, in August 2018 FDA accepted to re-evaluate the data of cladribine as a treatment option for relapsing remitting MS (RRMS). Another oral treatment option, Laquinimod, was not approved because it could not be shown to slow disability progression despite favourable effect in relapsing MS. Newer generation S1P receptor modulators are being investigated currently, and they are expected to come into the treatment arena soon. In this article, mechanisms of actions, clinical trial results, and side effects of the newer drugs used for MS, are reviewed. IFN beta and glatiramer acetate were not included since they have clinical experience nearing 30 years.