Unknown

Dataset Information

0

Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity.


ABSTRACT: Reducing topological network defects to enhance elasticity in polymeric materials remains a grand challenge. Efforts to control network topology, primarily focused on crosslinking junctions, continue to underperform compared to theoretical estimations from idealized networks using affine and phantom network theories. Here, artificial protein technology was adapted for the design of polymer-network hydrogels with precisely defined coil-like and rod-like strands to observe the impact of strand rigidity on the mechanical properties of polymeric materials. Cytoskeleton-inspired polymer-network hydrogels incorporated with rod-like protein strands nearly tripled the gel shear elastic modulus and relaxation time compared to coil-like protein strands, indicating an enhanced effective crosslinking density. Furthermore, asymmetric rod-coil protein designs in network strands with an optimal rod:coil ratio improved the hydrogel relaxation time, enhancing the stability of physical macromolecular associations by modulating crosslinker mobility. The careful design of strand rigidity presents a new direction to reduce topological defects for optimizing polymeric materials.

SUBMITTER: Knoff DS 

PROVIDER: S-EPMC7323958 | biostudies-literature | 2020 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cytoskeleton-inspired artificial protein design to enhance polymer network elasticity.

Knoff David S DS   Szczublewski Haley H   Altamirano Dallas D   Cortes Kareen A Fajardo KAF   Kim Minkyu M  

Macromolecules 20200429 9


Reducing topological network defects to enhance elasticity in polymeric materials remains a grand challenge. Efforts to control network topology, primarily focused on crosslinking junctions, continue to underperform compared to theoretical estimations from idealized networks using affine and phantom network theories. Here, artificial protein technology was adapted for the design of polymer-network hydrogels with precisely defined coil-like and rod-like strands to observe the impact of strand rig  ...[more]

Similar Datasets

| S-EPMC4730863 | biostudies-literature
| S-EPMC4455180 | biostudies-literature
| S-EPMC4672748 | biostudies-other
| S-EPMC6170896 | biostudies-literature
| S-EPMC6709596 | biostudies-literature
| S-EPMC9027874 | biostudies-literature
| S-EPMC3966029 | biostudies-literature
| S-EPMC6008460 | biostudies-literature
| S-EPMC3829919 | biostudies-other
| S-EPMC6308245 | biostudies-literature