Project description:Equine coronavirus (ECoV) is a recently identified equine virus, involved mainly in enteric infections. Since the ECoV discovery in 1999, only two real-time RT-PCRs have been developed for viral identification. In this chapter we describe a one-step real-time RT-PCR that has been routinely used in our laboratory for ECoV detection from fecal and respiratory samples.
Project description:To validate a panel of selected genes expression in prostate cancer, we performed expression profiling of normal prostate epithelial cells (PrEC) and the prostate cancer cell line LNCaP using qPCR.
Project description:The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV). Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.
Project description:Fundamental understanding of rabbit immunology and the use of the rabbit as a disease model have long been hindered by the lack of immunological assays specific to this species. In the present study, we sought to develop a method to quantitate cytokine expression in rabbit cells and tissues. We report the development of a quantitative real-time RT-PCR method for measuring the relative levels of rabbit IFN-gamma, IL-2, IL-4, IL-10 and TNF-alpha mRNA. Quantitation was accomplished by comparison to a standard curve generated using plasmid DNA containing partial sequences of the relevant cytokines. Experimental studies demonstrate applicability of this assay to quantitate cytokine mRNA levels from rabbit spleen cells following mitogen stimulation. We have further utilized this assay to also examine cytokine expression in rabbit tissues during experimental syphilis infection.
Project description:A novel microRNA (miRNA) quantification method has been developed using stem-loop RT followed by TaqMan PCR analysis. Stem-loop RT primers are better than conventional ones in terms of RT efficiency and specificity. TaqMan miRNA assays are specific for mature miRNAs and discriminate among related miRNAs that differ by as little as one nucleotide. Furthermore, they are not affected by genomic DNA contamination. Precise quantification is achieved routinely with as little as 25 pg of total RNA for most miRNAs. In fact, the high sensitivity, specificity and precision of this method allows for direct analysis of a single cell without nucleic acid purification. Like standard TaqMan gene expression assays, TaqMan miRNA assays exhibit a dynamic range of seven orders of magnitude. Quantification of five miRNAs in seven mouse tissues showed variation from less than 10 to more than 30,000 copies per cell. This method enables fast, accurate and sensitive miRNA expression profiling and can identify and monitor potential biomarkers specific to tissues or diseases. Stem-loop RT-PCR can be used for the quantification of other small RNA molecules such as short interfering RNAs (siRNAs). Furthermore, the concept of stem-loop RT primer design could be applied in small RNA cloning and multiplex assays for better specificity and efficiency.
Project description:A developmental expression profile of the Meloidodgyne javanica esophageal gland gene chorismate mutase-1 (Mj-cm-1) could suggest when in the lifecycle of the nematode the Mj-cm-1 product is functional. This study used real-time quantitative RT-PCR to examine the variation in Mj-cm-1 transcript levels over six timepoints in the nematode lifecycle: egg, infective second-stage juveniles (Inf-J2), 2-day post-inoculation (pi), 7-day pi, 14-day pi, and adult. The Mj-cm-1 mRNA levels peaked at 2-day pi, about 100-fold above levels expressed at the egg and Inf-J2 stages. Some expression of Mj-cm-1 remained during the 7-day pi, 14-day pi, and adult stages. High transcript levels of the beta-actin control gene M. javanica Beta-actin-1 (Mj-ba-1) demonstrated the presence of cDNA at all timepoints. The peak in Mj-cm-1 transcript expression at 2-day pi as well as the previously shown esophageal gland localization of Mj-cm-1 mRNA suggest that the product of this gene may be involved early in the establishment of parasitism.
Project description:BackgroundDue to the limited RNA amounts from endomyocardial biopsies (EMBs) and low expression levels of certain genes, gene expression analyses by conventional real-time RT-PCR are restrained in EMBs. We applied two preamplification techniques, the TaqMan(R) PreAmp Master Mix (T-PreAmp) and a multiplex preamplification following a sequence specific reverse transcription (SSRT-PreAmp).ResultsT-PreAmp encompassing 92 gene assays with 14 cycles resulted in a mean improvement of 7.24 +/- 0.33 Ct values. The coefficients for inter- (1.89 +/- 0.48%) and intra-assay variation (0.85 +/- 0.45%) were low for all gene assays tested (<4%). The PreAmp uniformity values related to the reference gene CDKN1B for 91 of the investigated gene assays (except for CD56) were -0.38 +/- 0.33, without significant differences between self-designed and ABI inventoried Taqman(R) gene assays. Only two of the tested Taqman(R) ABI inventoried gene assays (HPRT-ABI and CD56) did not maintain PreAmp uniformity levels between -1.5 and +1.5. In comparison, the SSRT-PreAmp tested on 8 self-designed gene assays yielded higher Ct improvement (9.76 +/- 2.45), however was not as robust regarding the maintenance of PreAmp uniformity related to HPRT-CCM (-3.29 +/- 2.40; p < 0.0001), and demonstrated comparable intra-assay CVs (1.47 +/- 0.74), albeit higher inter-assay CVs (5.38 +/- 2.06; p = 0.01). Comparing EMBs from each 10 patients with dilated cardiomyopathy (DCM) and inflammatory cardiomyopathy (DCMi), T-PreAmp real-time RT-PCR analyses revealed differential regulation regarding 27 (30%) of the investigated 90 genes related to both HPRT-CCM and CDKN1B. Ct values of HPRT and CDKN1B did not differ in equal RNA amounts from explanted DCM and donor hearts.ConclusionIn comparison to the SSRT-PreAmp, T-PreAmp enables a relatively simple workflow, and results in a robust PreAmp of multiple target genes (at least 92 gene assays as tested here) by a mean Ct improvement around 7 cycles, and in a lower inter-assay variance in RNA derived from EMBs. Preliminary analyses comparing EMBs from DCM and DCMi patients, revealing differential regulation regarding 30% of the investigated genes, confirm that T-PreAmp is a suitable tool to perform gene expression analyses in EMBs, expanding gene expression investigations with the limited RNA/cDNA amounts derived from EMBs. CDKN1B, in addition to its function as a reference gene for the calculation of PreAmp uniformity, might serve as a suitable housekeeping gene for real-time RT-PCR analyses of myocardial tissues.
Project description:The real-time quantitative polymerase chain reaction (rtqPCR) has overcome the limitations of conventional, time-consuming quantitative PCR strategies and is maturing into a routine tool to quantify gene expression levels, following reverse transcription (RT) of mRNA into complementary DNA (cDNA). Expression profiling with single-cell resolution is highly desirable, in particular for complex tissues like the brain that contain a large variety of different cell types in close proximity. The patch-clamp technique allows selective harvesting of single-cell cytoplasm after recording of cellular activity. However, components of the cDNA reaction, in particular the reverse transcriptase itself, significantly inhibit subsequent rtqPCR amplification. Using undiluted single-cell cDNA reaction mix directly as template for rtqPCR, I observed that the amplification kinetics of rtqPCRs were dramatically altered in a non-systematic fashion. Here, I describe a simple and robust precipitation protocol suitable for purification of single-cell cDNA that completely removes inhibitory RT components without detectable loss of cDNA. This improved single-cell real-time RT-PCR protocol provides a powerful tool to quantify differential gene expression of individual cells and thus could complement global microarray-based expression profiling strategies.
Project description:BACKGROUND:Influenza C virus can cause both upper and lower respiratory tract infections and has been reported to be prevalent in children. However, these infections have been under-diagnosed, and epidemiological data available are limited due to the lack of convenient detection assays. OBJECTIVE:Design and validate a real-time reverse-transcriptase PCR (rt RT-PCR) assay for the detection of influenza C. STUDY DESIGN:Respiratory samples from two primary settings, namely, children who were hospitalized or seen in the emergency department, and respiratory outbreaks for which no other viral etiology was found were used for the detection of influenza C. RESULTS AND CONCLUSIONS:The assay was sensitive and specific for the detection of influenza C. Eleven of 474 (2·32%) patients, all less than 10 years of age, were positive for influenza C. The strains clustered into two lineages, namely C/Kanagawa and C/Sao Paulo, based upon sequencing of the hemagglutinin-esterase gene. Epidemiological data showed that a higher proportion of influenza C infections occur in younger children and during the winter months. This is the first report of the detection of influenza C in Alberta, Canada, and suggests that the detection of this virus should be included in respiratory virus testing panels.