?-catenin-mediated Wnt signal transduction proceeds through an endocytosis-independent mechanism.
Ontology highlight
ABSTRACT: The Wnt pathway is a key intercellular signaling cascade that regulates development, tissue homeostasis, and regeneration. However, gaps remain in our understanding of the molecular events that take place between ligand-receptor binding and target gene transcription. We used a novel tool for quantitative, real-time assessment of endogenous pathway activation, measured in single cells, to answer an unresolved question in the field-whether receptor endocytosis is required for Wnt signal transduction. We combined knockdown or knockout of essential components of clathrin-mediated endocytosis with quantitative assessment of Wnt signal transduction in mouse embryonic stem cells (mESCs). Disruption of clathrin-mediated endocytosis did not affect accumulation and nuclear translocation of ?-catenin, as measured by single-cell live imaging of endogenous ?-catenin, and subsequent target gene transcription. Disruption of another receptor endocytosis pathway, caveolin-mediated endocytosis, did not affect Wnt pathway activation in mESCs. Additional results in multiple cell lines support that endocytosis is not a requirement for Wnt signal transduction. We show that off-target effects of a drug used to inhibit endocytosis may be one source of the discrepancy among reports on the role of endocytosis in Wnt signaling.
SUBMITTER: Rim EY
PROVIDER: S-EPMC7353137 | biostudies-literature | 2020 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA