Project description:Rationale: Obesity-related asthma disproportionately affects minority children and is associated with nonatopic T-helper type 1 (Th1) cell polarized inflammation that correlates with pulmonary function deficits. Its underlying mechanisms are poorly understood.Objectives: To use functional genomics to identify cellular mechanisms associated with nonatopic inflammation in obese minority children with asthma.Methods: CD4+ (cluster of differentiation 4-positive) Th cells from 59 obese Hispanic and African American children with asthma and 61 normal-weight Hispanic and African American children with asthma underwent quantification of the transcriptome and DNA methylome and genotyping. Expression and methylation quantitative trait loci revealed the contribution of genetic variation to transcription and DNA methylation. Adjusting for Th-cell subtype proportions discriminated loci where transcription or methylation differences were driven by differences in subtype proportions from loci that were independently associated with obesity-related asthma.Measurements and Main Results: Obese children with asthma had more memory and fewer naive Th cells than normal-weight children with asthma. Differentially expressed and methylated genes and methylation quantitative trait loci in obese children with asthma, independent of Th-cell subtype proportions, were enriched in Rho-GTPase pathways. Inhibition of CDC42 (cell division cycle 42), one of the Rho-GTPases associated with Th-cell differentiation, was associated with downregulation of the IFNγ, but not the IL-4, gene. Differential expression of the RPS27L (40S ribosomal protein S27-like) gene, part of the p53/mammalian target of rapamycin pathway, was due to nonrandom distribution of expression quantitative trait loci variants between groups. Differentially expressed and/or methylated genes, including RPS27L, were associated with pulmonary function deficits in obese children with asthma.Conclusions: We found enrichment of Rho-GTPase pathways in obese asthmatic Th cells, identifying them as a novel therapeutic target for obesity-related asthma, a disease that is suboptimally responsive to current therapies.
Project description:RHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Project description:Rho guanosine triphosphatase (GTPases), as molecular switches, have been identified to be dysregulated and involved in the pathogenesis of various rheumatic diseases, mainly including rheumatoid arthritis, osteoarthritis, systemic sclerosis, and systemic lupus erythematosus. Downstream pathways involving multiple types of cells, such as fibroblasts, chondrocytes, synoviocytes, and immunocytes are mediated by activated Rho GTPases to promote pathogenesis. Targeted therapy via inhibitors of Rho GTPases has been implicated in the treatment of rheumatic diseases, demonstrating promising effects. In this review, the effects of Rho GTPases in the pathogenesis of rheumatic diseases are summarized, and the Rho GTPase-mediated pathways are elucidated. Therapeutic strategies using Rho GTPase inhibitors in rheumatic diseases are also discussed to provide insights for further exploration of targeted therapy in preclinical studies and clinical practice. Future directions on studies of Rho GTPases in rheumatic diseases based on current understandings are provided.
Project description:The Rho family of GTPases control actin organization during diverse cellular responses (migration, cytokinesis and endocytosis). Although the primary members of this family (RhoA, Rac and Cdc42) have different downstream effects on actin remodeling, the basic mechanism involves targeting to the plasma membrane and activation by GTP binding. Our hypothesis is that the details of GTPase cycling between membrane and cytosol are key to the differential upstream regulation of these biochemical switches. Accordingly, we developed a modeling framework to analyze experimental data for these systems. This analysis can reveal details of GDI-mediated cycling and help distinguish between GDI-dependent and -independent mechanisms, including vesicle trafficking and direct association-dissociation of GTPase with membrane molecules. Analysis of experimental data for Rac membrane cycling reveals that the lower apparent affinity of GDI for RacGTP compared to RacGDP can be fully explained by the faster dissociation of the latter from the membrane. Non-dimensional steady-state solutions for membrane fraction of GTPase are presented in multidimensional charts. This methodology is then used to analyze glucose stimulated Rac cycling in pancreatic β-cells. The charts are used to illustrate the effects of GEFs/GAPs and regulated affinities between GTPases and membrane and/or GDI on the amount of membrane bound GTPase. In a similar fashion, the charts can be used as a guide in assessing how targeted modifications may compensate for altered GTPase-GDI balance in disease scenarios.
Project description:Endothelial monolayer permeability is regulated by actin dynamics and vesicular traffic. Recently, ubiquitination was also implicated in the integrity of quiescent endothelium, as it differentially controls the localization and stability of adhesion and signaling proteins. However, the more general effect of fast protein turnover on endothelial integrity is not clear. Here, we found that inhibition of E1 ubiquitin ligases induces a rapid, reversible loss of integrity in quiescent, primary human endothelial monolayers, accompanied by increased F-actin stress fibers and the formation of intercellular gaps. Concomitantly, total protein and activity of the actin-regulating GTPase RhoB, but not its close homolog RhoA, increase ∼10-fold in 5 to 8 h. We determined that the depletion of RhoB, but not of RhoA, the inhibition of actin contractility, and the inhibition of protein synthesis all significantly rescue the loss of cell-cell contact induced by E1 ligase inhibition. Collectively, our data suggest that in quiescent human endothelial cells, the continuous and fast turnover of short-lived proteins that negatively regulate cell-cell contact is essential to preserve monolayer integrity.
Project description:GPR78 is an orphan G-protein coupled receptor (GPCR) that is predominantly expressed in human brain tissues. Currently, the function of GPR78 is unknown. This study revealed that GPR78 was expressed in lung cancer cells and functioned as a novel regulator of lung cancer cell migration and metastasis. We found that knockdown of GPR78 in lung cancer cells suppressed cell migration. Moreover, GPR78 modulated the formation of actin stress fibers in A549 cells, in a RhoA- and Rac1-dependent manner. At the molecular level, GPR78 regulated cell motility through the activation of Gαq-RhoA/Rac1 pathway. We further demonstrated that in vivo, the knockdown of GPR78 inhibited lung cancer cell metastasis. These findings suggest that GPR78 is a novel regulator for lung cancer metastasis and may serve as a potential drug target against metastatic human lung cancer. [BMB Reports 2016; 49(11): 623-628].
Project description:In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and myosin-2. Formation of the contractile ring is dependent on the small GTPase RhoA, which is activated in a precise zone at the cell equator. It has long been assumed that cytokinesis and other Rho-dependent processes are controlled in a sequential manner, whereby Rho activation by guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation by GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis regulator thought to be required only at the end of cytokinesis. Here we show that GAP activity of MgcRacGAP is necessary early during cytokinesis for the formation and maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in poorly focused Rho activity zones, whereas complete removal of the GAP domain results in unfocused zones that show lateral instability and/or rapid side-to-side oscillations. We propose that the GAP domain of MgcRacGAP has two unexpected roles throughout cytokinesis: first, it transiently anchors active Rho, and second, it promotes local Rho inactivation, resulting in the constant flux of Rho through the GTPase cycle.
Project description:Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells.We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.
Project description:As key regulators of cytoskeletal dynamics, Rho GTPases coordinate a wide range of cellular processes, including cell polarity, cell migration, and cell cycle progression. The adoption of a pro-migratory phenotype enables cancer cells to invade the stroma surrounding the primary tumor and move toward and enter blood or lymphatic vessels. Targeting these early events could reduce the progression to metastatic disease, the leading cause of cancer-related deaths. Rho GTPases play a key role in the formation of dynamic actin-rich membrane protrusions and the turnover of cell-cell and cell-extracellular matrix adhesions required for efficient cancer cell invasion. Here, we discuss the roles of Rho GTPases in cancer, their validation as therapeutic targets and the challenges of developing clinically viable Rho GTPase inhibitors. We review other therapeutic targets in the wider Rho GTPase signaling network and focus on the four best characterized effector families: p21-activated kinases (PAKs), Rho-associated protein kinases (ROCKs), atypical protein kinase Cs (aPKCs), and myotonic dystrophy kinase-related Cdc42-binding kinases (MRCKs).