Unknown

Dataset Information

0

Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication.


ABSTRACT: In this study, the 3D printability of a series of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(lactic acid) (PLA) blends were investigated using fused filament fabrication (FFF). The studied blends suffered from poor 3D printability due to differences in compatibility and low thermal resistance. These shortcomings were addressed by incorporating a functionalized styrene-acrylate copolymer with oxirane moieties as a chain extender (CE). To enhance mechanical properties, the synergistic effect of 3D printing parameters such as printing temperature and speed, layer thickness and bed temperature were explored. Rheological analysis showed improvement in the 3D printability of PHBV:PLA:CE blend by allowing a higher printing temperature (220 °C) and sufficient printing speed (45 mm s-1). The surface morphology of fractured tensile specimens showed good bonding between layers when a bed temperature of 60 °C was used and a layer thickness of 0.25 mm was designed. The optimized printing samples shown higher storage modulus and strength, resulting in stiffer and stronger parts. The crystallinity, morphology and performance of the 3D printed products were correlated to share key methods to improve the 3D printability of PHBV:PLA based blends which may be implemented in other biopolymer blends, and further highlight how process parameters enhance the mechanical performance of 3D printed products.

SUBMITTER: Vigil Fuentes MA 

PROVIDER: S-EPMC7367353 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Study on the 3D printability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) blends with chain extender using fused filament fabrication.

Vigil Fuentes Miguel A MA   Thakur Suman S   Wu Feng F   Misra Manjusri M   Gregori Stefano S   Mohanty Amar K AK  

Scientific reports 20200716 1


In this study, the 3D printability of a series of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(lactic acid) (PLA) blends were investigated using fused filament fabrication (FFF). The studied blends suffered from poor 3D printability due to differences in compatibility and low thermal resistance. These shortcomings were addressed by incorporating a functionalized styrene-acrylate copolymer with oxirane moieties as a chain extender (CE). To enhance mechanical properties, the synergisti  ...[more]

Similar Datasets

| S-EPMC7918987 | biostudies-literature
| S-EPMC6645286 | biostudies-literature
| S-EPMC4822857 | biostudies-literature