Ontology highlight
ABSTRACT: Background
Folate metabolism plays an important role in DNA methylation and nucleic acid synthesis and thus may function as a regulatory factor in cancer development. Genome-wide association studies (GWASs) have identified some single-nucleotide polymorphisms (SNPs) associated with cutaneous melanoma-specific survival (CMSS), but no SNPs were found in genes involved in the folate metabolic pathway.Objectives
To examine associations between SNPs in folate metabolic pathway genes and CMSS.Methods
We comprehensively evaluated 2645 (422 genotyped and 2223 imputed) common SNPs in folate metabolic pathway genes from a published GWAS of 858 patients from The University of Texas MD Anderson Cancer Center and performed the validation in another GWAS of 409 patients from the Nurses' Health Study and Health Professionals Follow-up Study, in which 95/858 (11·1%) and 48/409 (11·7%) patients died of cutaneous melanoma, respectively.Results
We identified two independent SNPs (MTHFD1 rs1950902 G>A and ALPL rs10917006 C>T) to be associated with CMSS in both datasets, and their meta-analysis yielded an allelic hazards ratio of 1·75 (95% confidence interval 1·32-2·32, P = 9·96 × 10-5 ) and 2·05 (1·39-3·01, P = 2·84 × 10-4 ), respectively. The genotype-phenotype correlation analyses provided additional support for the biological plausibility of these two variants' roles in tumour progression, suggesting that variation in SNP-related mRNA expression levels is likely to be the mechanism underlying the observed associations with CMSS.Conclusions
Two possibly functional genetic variants, MTHFD1 rs1950902 and ALPL rs10917006, were likely to be independently or jointly associated with CMSS, which may add to personalized treatment in the future, once further validated. What is already known about this topic? Existing data show that survival rates vary among patients with melanoma with similar clinical characteristics; therefore, it is necessary to identify additional complementary biomarkers for melanoma-specific prognosis. A hypothesis-driven approach, by pooling the effects of single-nucleotide polymorphisms (SNPs) in a specific biological pathway as genetic risk scores, may provide a prognostic utility, and genetic variants of genes in folate metabolism have been reported to be associated with cancer risk. What does this study add? Two genetic variants in the folate metabolic pathway genes, MTHFD1 rs1950902 and ALPL rs10917006, are significantly associated with cutaneous melanoma-specific survival (CMSS). What is the translational message? The identification of genetic variants will make a risk-prediction model possible for CMSS. The SNPs in the folate metabolic pathway genes, once validated in larger studies, may be useful in the personalized management and treatment of patients with cutaneous melanoma.
SUBMITTER: Dai W
PROVIDER: S-EPMC7367702 | biostudies-literature |
REPOSITORIES: biostudies-literature