Unknown

Dataset Information

0

Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis.


ABSTRACT: Direct lasing of polymeric membranes to form laser induced graphene (LIG) offers a scalable and potentially cheaper alternative for the fabrication of electrically conductive membranes. However, the high temperatures induced during lasing can deform the substrate polymer, altering existing micro- and nanosized features that are crucial for a membrane's performance. Here, we demonstrate how sequential infiltration synthesis (SIS) of alumina, a simple solvent-free process, stabilizes polyethersulfone (PES) membranes against deformation above the polymers' glass transition temperature, enabling the formation of LIG without any changes to the membrane's underlying pore structure. These membranes are shown to have comparable sheet resistance to carbon-nanotube-composite membranes. They are electrochemically stable and maintain their permeability after lasing, demonstrating their competitive performance as electrically conductive membranes. These results demonstrate the immense versatility of SIS for modifying materials when combined with laser induced graphitization for a variety of applications.

SUBMITTER: Bergsman DS 

PROVIDER: S-EPMC7371709 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis.

Bergsman David S DS   Getachew Bezawit A BA   Cooper Christopher B CB   Grossman Jeffrey C JC  

Nature communications 20200720 1


Direct lasing of polymeric membranes to form laser induced graphene (LIG) offers a scalable and potentially cheaper alternative for the fabrication of electrically conductive membranes. However, the high temperatures induced during lasing can deform the substrate polymer, altering existing micro- and nanosized features that are crucial for a membrane's performance. Here, we demonstrate how sequential infiltration synthesis (SIS) of alumina, a simple solvent-free process, stabilizes polyethersulf  ...[more]

Similar Datasets

| S-EPMC4264682 | biostudies-literature
| S-EPMC8146350 | biostudies-literature
| S-EPMC5757528 | biostudies-literature
| S-EPMC4999264 | biostudies-literature
| S-EPMC8292192 | biostudies-literature
| S-EPMC9052092 | biostudies-literature
| S-EPMC9130875 | biostudies-literature
| S-EPMC9972563 | biostudies-literature
| S-EPMC8271387 | biostudies-literature
| S-EPMC6645430 | biostudies-literature