Unknown

Dataset Information

0

High-temperature optical properties of indium tin oxide thin-films.


ABSTRACT: Indium tin oxide (ITO) is one of the most widely used transparent conductors in optoelectronic device applications. We investigated the optical properties of ITO thin films at high temperatures up to 800 °C using spectroscopic ellipsometry. As temperature increases, amorphous ITO thin films undergo a phase transition at ~?200 °C and develop polycrystalline phases with increased optical gap energies. The optical gap energies of both polycrystalline and epitaxial ITO thin films decrease with increasing temperature due to electron-phonon interactions. Depending on the background oxygen partial pressure, however, we observed that the optical gap energies exhibit reversible changes, implying that the oxidation and reduction processes occur vigorously due to the low oxidation and reduction potential energies of the ITO thin films at high temperatures. This result suggests that the electronic structure of ITO thin films strongly depends on temperature and oxygen partial pressure while they remain optically transparent, i.e., optical gap energies >?3.6 eV.

SUBMITTER: Kim J 

PROVIDER: S-EPMC7385179 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

High-temperature optical properties of indium tin oxide thin-films.

Kim Jiwoong J   Shrestha Sujan S   Souri Maryam M   Connell John G JG   Park Sungkyun S   Seo Ambrose A  

Scientific reports 20200727 1


Indium tin oxide (ITO) is one of the most widely used transparent conductors in optoelectronic device applications. We investigated the optical properties of ITO thin films at high temperatures up to 800 °C using spectroscopic ellipsometry. As temperature increases, amorphous ITO thin films undergo a phase transition at ~ 200 °C and develop polycrystalline phases with increased optical gap energies. The optical gap energies of both polycrystalline and epitaxial ITO thin films decrease with incre  ...[more]

Similar Datasets

| S-EPMC5071817 | biostudies-literature
| S-EPMC5551745 | biostudies-other
| S-EPMC5512923 | biostudies-other