Monitoring the Immunoproteasome in Live Cells Using an Activity-Based Peptide-Peptoid Hybrid Probe.
Ontology highlight
ABSTRACT: Activity-based probes have greatly improved our understanding of the intrinsic roles and expression levels of various proteins within cells. To be useful in live cells, probes must be cell permeable and provide a read-out that can be measured without disrupting the cells or the activity of the target. Unfortunately, probes for the various forms of the proteasome that can be utilized in intact cells are limited; commercially available probes are most effectively used with purified protein or cell lysate. The proteasome, both the 26S and various isoforms of the 20S CP, is an important target with reported roles in cancer, autoimmune disorders, and neurodegenerative diseases. Here, we present the development of a selective probe for the immunoproteasome, a specialized isoform of the 20S proteasome, that becomes expressed in cells that encounter an inflammatory signal. Using a one-bead, one-compound library of small peptides, we discovered a trimer sequence efficiently cleaved by the immunoproteasome with significant selectivity over the standard proteasome. Upon conjugating this sequence to rhodamine 110 and a peptoid, we generated a probe with a considerable improvement in sensitivity compared to that of current aminomethylcoumarin-based proteasome probes. Importantly, our probe was capable of labeling immunoproteasome-expressing cells while maintaining its selectivity over other cellular proteases in live cell cultures. We anticipate this probe to find wide utility for those that wish to study the immunoproteasome's activity in a variety of cell lines and to be used as a reporter to discover small molecules that can perturb the activity of this proteasome isoform.
SUBMITTER: Zerfas BL
PROVIDER: S-EPMC7389183 | biostudies-literature | 2019 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA