ABSTRACT: Background:Epilepsy is a chronic, complex, unprovoked, and recurrent disorder of the nervous system that affected several people worldwide. Phyllanthus amarus (PA) has been documented to have neuroprotective potential. Aim:To evaluate the potential of standardized extract of PA and its possible mechanism of action against the Pentylenetetrazol (PTZ)-induced convulsion and kindling associated post-ictal depression in experimental mice. Materials and Methods:Phyllathin was isolated from methanolic extract of PA and well-characterized using HPTLC, ESI-MS/MS, and LC/MS. Phyllathin containing a standardized extract of PA (50, 100, and 200 mg/kg) was administered in convulsed and kindled mice, followed by an assessment of various parameters. Results:The spectral analysis confirmed the molecular formula and weight of phyllanthin as C24H34O6 and 418.2342 Da. PA (100 and 200 mg/kg) significantly ameliorated PTZ-induced (p < 0.05) duration, onset of tonic-clonic convulsion, and mortality in mice. It also significantly attenuated (p < 0.05) PTZ-induced kindling in mice. Alteration in brain GABA, dopamine, and glutamate, Na+K+ATPase, Ca+2-ATPase activities, and oxido-nitrosative stress in kindled mice was significantly restored (p < 0.05) by PA treatment. It also significantly (p < 0.05) down-regulated brain mRNA expressions of NF-?B, TNF-?, IL-1?, COX-2, and TLR-4. Histological aberrations induced by PTZ in the brain of a kindled rat was significantly (p < 0.05) ameliorated by PA. Conclusion:Phyllanthin containing a standardized extract of PA exerts its antiepileptic potential via balancing excitatory (glutamate) and inhibitory (GABA) brain monoamines, voltage-gated ion channels (Na+K+/Ca+2-ATPase) and inhibition of NF-?B/TLR-4 pathway to ameliorate neuroinflammation (TNF-?, IL-1?, and COX-2) in experimental mice.