Unknown

Dataset Information

0

Design, Synthesis, and Biological Evaluation of Novel Thiazolidinone-Containing Quinoxaline-1,4-di-N-oxides as Antimycobacterial and Antifungal Agents.


ABSTRACT: Tuberculosis and fungal infections can pose serious threats to human health. In order to find novel antimicrobial agents, 26 novel quinoxaline-1,4-di-N-oxides containing a thiazolidinone moiety were designed and synthesized, and their antimycobacterial activities were evaluated. Among them, compounds 2t, 2u, 2y, and 2z displayed the most potent antimycobacterial activity against Mycobacterium tuberculosis strain H37Rv (minimal inhibitory concentration [MIC] = 1.56 ?g/mL). The antifungal activity of all the compounds was also evaluated against Candida albicans, Candida tropicalis, Aspergillus fumigatus, and Cryptococcus neoformans. Compounds 2t, 2u, 2y, and 2z exhibited potential antifungal activities, with an MIC between 2 and 4 ?g/mL. Comparative molecular field analysis (CoMFA: q 2 = 0.914, r 2 = 0.967) and comparative molecular similarity index analysis (CoMSIA: q 2 = 0.918, r 2 = 0.968) models were established to investigate the structure and antimycobacterial activity relationship. The results of contour maps revealed that electronegative and sterically bulky substituents play an important role in the antimycobacterial activity. Electronegative and sterically bulky substituents are preferred at the C7 position of the quinoxaline ring and the C4 position of the phenyl group to increase the antimycobacterial activity. Additionally, more hydrogen bond donor substituents should be considered at the C2 side chain of the quinoxaline ring to improve the activity.

SUBMITTER: Zhang H 

PROVIDER: S-EPMC7424068 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Design, Synthesis, and Biological Evaluation of Novel Thiazolidinone-Containing Quinoxaline-1,4-di-<i>N</i>-oxides as Antimycobacterial and Antifungal Agents.

Zhang Heying H   Zhang Jie J   Qu Wei W   Xie Shuyu S   Huang Lingli L   Chen Dongmei D   Tao Yanfei Y   Liu Zhenli Z   Pan Yuanhu Y   Yuan Zonghui Z  

Frontiers in chemistry 20200806


Tuberculosis and fungal infections can pose serious threats to human health. In order to find novel antimicrobial agents, 26 novel quinoxaline-1,4-di-<i>N</i>-oxides containing a thiazolidinone moiety were designed and synthesized, and their antimycobacterial activities were evaluated. Among them, compounds <b>2t</b>, <b>2u</b>, <b>2y</b>, and <b>2z</b> displayed the most potent antimycobacterial activity against <i>Mycobacterium tuberculosis</i> strain H37Rv (minimal inhibitory concentration [M  ...[more]

Similar Datasets

| S-EPMC6271882 | biostudies-literature
| S-EPMC4546592 | biostudies-literature
| S-EPMC5147047 | biostudies-literature
| S-EPMC6155662 | biostudies-literature
| S-EPMC7405587 | biostudies-literature
| S-EPMC9940851 | biostudies-literature
| S-EPMC6264295 | biostudies-literature
| S-EPMC3589036 | biostudies-literature
| S-EPMC3007200 | biostudies-literature
| S-EPMC6684525 | biostudies-literature