Unknown

Dataset Information

0

Heat shock drives genomic instability and phenotypic variations in yeast.


ABSTRACT: High temperature causes ubiquitous environmental stress to microorganisms, but studies have not fully explained whether and to what extent heat shock would affect genome stability. Hence, this study explored heat-shock-induced genomic alterations in the yeast Saccharomyces cerevisiae. Using genetic screening systems and customized single nucleotide polymorphism (SNP) microarrays, we found that heat shock (52 °C) for several minutes could heighten mitotic recombination by at least one order of magnitude. More than half of heat-shock-induced mitotic recombinations were likely to be initiated by DNA breaks in the S/G2 phase of the cell cycle. Chromosomal aberration, mainly trisomy, was elevated hundreds of times in heat-shock-treated cells than in untreated cells. Distinct chromosomal instability patterns were also observed between heat-treated and carbendazim-treated yeast cells. Finally, we demonstrated that heat shock stimulates fast phenotypic evolutions (such as tolerance to ethanol, vanillin, fluconazole, and tunicamycin) in the yeast population. This study not only provided novel insights into the effect of temperature fluctuations on genomic integrity but also developed a simple protocol to generate an aneuploidy mutant of yeast.

SUBMITTER: Shen L 

PROVIDER: S-EPMC7431486 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heat shock drives genomic instability and phenotypic variations in yeast.

Shen Li L   Wang Yu-Ting YT   Tang Xing-Xing XX   Zhang Ke K   Wang Pin-Mei PM   Sui Yang Y   Zheng Dao-Qiong DQ  

AMB Express 20200817 1


High temperature causes ubiquitous environmental stress to microorganisms, but studies have not fully explained whether and to what extent heat shock would affect genome stability. Hence, this study explored heat-shock-induced genomic alterations in the yeast Saccharomyces cerevisiae. Using genetic screening systems and customized single nucleotide polymorphism (SNP) microarrays, we found that heat shock (52 °C) for several minutes could heighten mitotic recombination by at least one order of ma  ...[more]

Similar Datasets

2020-05-18 | GSE150711 | GEO
| PRJNA633359 | ENA
| S-EPMC3278960 | biostudies-literature
| S-EPMC5187712 | biostudies-literature
| S-EPMC6435272 | biostudies-literature
2012-08-14 | GSE40073 | GEO
| S-EPMC8744673 | biostudies-literature
| S-EPMC8443186 | biostudies-literature
| S-EPMC8336898 | biostudies-literature
| S-EPMC7668020 | biostudies-literature