Project description:Seasonal influenza virus epidemics have a major impact on healthcare systems. Data on population susceptibility to emerging influenza virus strains during the interepidemic period can guide planning for resource allocation of an upcoming influenza season. This study sought to assess the population susceptibility to representative emerging influenza virus strains collected during the interepidemic period. The microneutralisation antibody titers (MN titers) of a human serum panel against representative emerging influenza strains collected during the interepidemic period before the 2018/2019 winter influenza season (H1N1-inter and H3N2-inter) were compared with those against influenza strains representative of previous epidemics (H1N1-pre and H3N2-pre). A multifaceted approach, incorporating both genetic and antigenic data, was used in selecting these representative influenza virus strains for the MN assay. A significantly higher proportion of individuals had a ⩾four-fold reduction in MN titers between H1N1-inter and H1N1-pre than that between H3N2-inter and H3N2-pre (28.5% (127/445) vs. 4.9% (22/445), P < 0.001). The geometric mean titer (GMT) of H1N1-inter was significantly lower than that of H1N1-pre (381 (95% CI 339-428) vs. 713 (95% CI 641-792), P < 0.001), while there was no significant difference in the GMT between H3N2-inter and H3N2-pre. Since A(H1N1) predominated the 2018-2019 winter influenza epidemic, our results corroborated the epidemic subtype.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.
Project description:Since COVID-19 and flu have similar symptoms, they are difficult to distinguish without an accurate diagnosis. Therefore, it is critical to quickly and accurately determine which virus was infected and take appropriate treatments when a person has an infection. This study developed a dual-mode surface-enhanced Raman scattering (SERS)-based LFA strip that can diagnose SARS-CoV-2 and influenza A virus with high accuracy to reduce the false-negative problem of the commercial colorimetric LFA strip. Furthermore, using a single strip, it is feasible to detect SARS-CoV-2 and influenza A virus simultaneously. A clinical test was performed on 39 patient samples (28 SARS-CoV-2 positives, 6 influenza A virus positives, and 5 negatives), evaluating the clinical efficacy of the proposed dual-mode SERS-LFA strip. Our assay results for clinical samples show that the dual-mode LFA strip significantly reduced the false-negative rate for both SARS-CoV-2 and influenza A virus.
Project description:BackgroundHuman spillovers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to dogs and the emergence of a highly contagious avian-origin H3N2 canine influenza virus have raised concerns on the role of dogs in the spread of SARS-CoV-2 and their susceptibility to existing human and avian influenza viruses, which might result in further reassortment.MethodsWe systematically studied the replication kinetics of SARS-CoV-2, SARS-CoV, influenza A viruses of H1, H3, H5, H7, and H9 subtypes, and influenza B viruses of Yamagata-like and Victoria-like lineages in ex vivo canine nasal cavity, soft palate, trachea, and lung tissue explant cultures and examined ACE2 and sialic acid (SA) receptor distribution in these tissues.ResultsThere was limited productive replication of SARS-CoV-2 in canine nasal cavity and SARS-CoV in canine nasal cavity, soft palate, and lung, with unexpectedly high ACE2 levels in canine nasal cavity and soft palate. Canine tissues were susceptible to a wide range of human and avian influenza viruses, which matched with the abundance of both human and avian SA receptors.ConclusionsExistence of suitable receptors and tropism for the same tissue foster virus adaptation and reassortment. Continuous surveillance in dog populations should be conducted given the many chances for spillover during outbreaks.
Project description:Dependent on the excretion pattern, wastewater monitoring of viruses can be a valuable approach to characterizing their circulation in the human population. Using polyethylene glycol precipitation and reverse transcription-quantitative PCR, the occurrence of RNA of SARS-CoV-2 and influenza viruses A/B in the raw wastewater of two treatment plants in Germany between January and May 2022 was investigated. Due to the relatively high incidence in both exposal areas (plant 1 and plant 2), SARS-CoV-2-specific RNA was determined in all 273 composite samples analyzed (concentration of E gene: 1.3 × 104 to 3.2 × 106 gc/L). Despite a nation-wide low number of confirmed infections, influenza virus A was demonstrated in 5.2% (concentration: 9.8 × 102 to 8.4 × 104 gc/L; plant 1) and in 41.6% (3.6 × 103 to 3.0 × 105 gc/L; plant 2) of samples. Influenza virus B was detected in 36.0% (7.2 × 102 to 8.5 × 106 gc/L; plant 1) and 57.7% (9.6 × 103 to 2.1 × 107 gc/L; plant 2) of wastewater samples. The results of the study demonstrate the frequent detection of two primary respiratory viruses in wastewater and offer the possibility to track the epidemiology of influenza by wastewater-based monitoring.
Project description:The upcoming flu season in the Northern Hemisphere merging with the current COVID-19 pandemic raises a potentially severe threat to public health. Through experimental coinfection with influenza A virus (IAV) and either pseudotyped or live SARS-CoV-2 virus, we found that IAV preinfection significantly promoted the infectivity of SARS-CoV-2 in a broad range of cell types. Remarkably, in vivo, increased SARS-CoV-2 viral load and more severe lung damage were observed in mice coinfected with IAV. Moreover, such enhancement of SARS-CoV-2 infectivity was not observed with several other respiratory viruses, likely due to a unique feature of IAV to elevate ACE2 expression. This study illustrates that IAV has a unique ability to aggravate SARS-CoV-2 infection, and thus, prevention of IAV infection is of great significance during the COVID-19 pandemic.
Project description:Favipiravir was initially developed as an antiviral drug against influenza and is currently used in clinical trials against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (COVID-19). This agent is presumably involved in RNA chain termination during influenza virus replication, although the molecular interactions underlying its potential impact on the coronaviruses including SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) remain unclear. We performed in silico studies to elucidate detailed molecular interactions between favipiravir and the SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza virus RNA-dependent RNA polymerases (RdRp). As a result, no interactions between favipiravir ribofuranosyl-5'-triphosphate (F-RTP), the active form of favipiravir, and the active sites of RdRps (PB1 proteins) from influenza A (H1N1)pdm09 virus were found, yet the agent bound to the tunnel of the replication genome of PB1 protein leading to the inhibition of replicated RNA passage. In contrast, F-RTP bound to the active sites of coronavirus RdRp in the presence of the agent and RdRp. Further, the agent bound to the replicated RNA terminus in the presence of agent, magnesium ions, nucleotide triphosphate, and RdRp proteins. These results suggest that favipiravir exhibits distinct mechanisms of action against influenza virus and various coronaviruses.
Project description:The hemagglutinin (HA) surface protein is the primary immune target for most influenza vaccines. The neuraminidase (NA) surface protein is often a secondary target for vaccine designs. In this study, computationally optimized broadly reactive antigen (COBRA) methodology was used to generate the N1-I NA vaccine antigen that was designed to cross-react with avian, swine, and human influenza viruses of the N1 NA subtype. The elicited antibodies bound to NA proteins derived from A/California/07/2009 (H1N1)pdm09, A/Brisbane/59/2007 (H1N1), A/Swine/North Carolina/154074/2015 (H1N1), and A/Viet Nam/1203/2004 (H5N1) influenza viruses, with NA-neutralizing activity against a broad panel of HXN1 influenza strains. Mice vaccinated with the N1-I COBRA NA vaccine were protected from mortality and viral lung titers were lower when challenged with four different viral challenges (A/California/07/2009, A/Brisbane/59/2007, A/Swine/North Carolina/154074/2015, and A/Viet Nam/1203/2004). Vaccinated mice had little to no weight loss against both homologous, but also cross-NA, genetic clade challenges. Lung viral titers were lower than the mock-vaccinated mice and, at times, equivalent to the homologous control. Thus, the N1-I COBRA NA antigen has the potential to be a complementary component in a multiantigen universal influenza virus vaccine formulation that also contains HA antigens. IMPORTANCE The development and distribution of a universal influenza vaccine would alleviate global economic and public health stress from annual influenza virus outbreaks. The influenza virus NA vaccine antigen allows for protection from multiple HA subtypes and virus host origins, but it has not been the focus of vaccine development. The N1-I NA antigen described here protected mice from direct challenge of four distinct influenza viruses and inhibited the enzymatic activity of an N1 influenza virus panel. The use of the NA antigen in combination with the HA antigen widens the breadth of protection against various virus strains. Therefore, this research opens the door to the development of a longer-lasting vaccine with increased protective breadth.