Unknown

Dataset Information

0

Polychlorinated Biphenyl Electrochemical Aptasensor Based on a Diamond-Gold Nanocomposite to Realize a Sub-Femtomolar Detection Limit.


ABSTRACT: Polychlorinated biphenyls (PCBs) with high toxicity, low lethal dose, and bioaccumulation have been inhibited for application in wide fields, and a highly efficient trace detection is thus greatly desirable. In this study, we produce dense Au-nanoparticles by twice sputtering and twice annealing (T-Au-NPs) on boron-doped diamond (BDD). The successful formation of T-Au-NPs/BDD nanocomposites was confirmed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy analysis. Based on T-Au-NPs/BDD, an electronic biosensor with aptamers is fabricated to detect trace polychlorinated biphenyl-77 (PCB-77) by electrochemical impedance. A good linear relationship in the range of femtomolar to micromolar and significantly low detection limit of sub-femtomolar level (0.32 fM) are realized based on the biosensor. The emphasis of this research lies in the key role of the diamond substrate in the biosensor. It is demonstrated that the biosensor has excellent sensitivity, specificity, stability, and recyclability, which are favorable for detecting the trace PCB-77 molecule. It is attributed to the important effect presented by the BDD substrate and the synergistic influence of T-Au-NPs combined with aptamers.

SUBMITTER: Yuan X 

PROVIDER: S-EPMC7482256 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polychlorinated Biphenyl Electrochemical Aptasensor Based on a Diamond-Gold Nanocomposite to Realize a Sub-Femtomolar Detection Limit.

Yuan Xiaoxi X   Jiang Zhigang Z   Wang Qiliang Q   Gao Nan N   Li Hongdong H   Ma Yibo Y  

ACS omega 20200824 35


Polychlorinated biphenyls (PCBs) with high toxicity, low lethal dose, and bioaccumulation have been inhibited for application in wide fields, and a highly efficient trace detection is thus greatly desirable. In this study, we produce dense Au-nanoparticles by twice sputtering and twice annealing (T-Au-NPs) on boron-doped diamond (BDD). The successful formation of T-Au-NPs/BDD nanocomposites was confirmed by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelect  ...[more]

Similar Datasets

| S-EPMC5507977 | biostudies-literature
| S-EPMC8466510 | biostudies-literature
| S-EPMC8945915 | biostudies-literature
| S-EPMC10647457 | biostudies-literature
| S-EPMC8953296 | biostudies-literature
| S-EPMC9204155 | biostudies-literature
| S-EPMC4061716 | biostudies-literature
| S-EPMC7039953 | biostudies-literature
| S-EPMC2579784 | biostudies-literature
| S-EPMC5374277 | biostudies-literature