Unknown

Dataset Information

0

Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes.


ABSTRACT: Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate of 10-6 . All isolates carried mutations in clpP. All mutated S. aureus ClpP proteins characterised in this study were functionally impaired; this increased our understanding of the mode of operation of ClpP. For molecular insights, crystal structures of S. aureus ClpP bound to ADEP4 were determined. Well-resolved N-terminal domains in the apo structure allow the pore-gating mechanism to be followed. The compilation of mutations presented here indicates residues relevant for ClpP function and suggests that ADEP resistance will occur at a lower rate during the infection process.

SUBMITTER: Malik IT 

PROVIDER: S-EPMC7496096 | biostudies-literature | 2020 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes.

Malik Imran T IT   Pereira Rebeca R   Vielberg Marie-Theres MT   Mayer Christian C   Straetener Jan J   Thomy Dhana D   Famulla Kirsten K   Castro Helena H   Sass Peter P   Groll Michael M   Brötz-Oesterhelt Heike H  

Chembiochem : a European journal of chemical biology 20200409 14


Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate  ...[more]

Similar Datasets

| S-EPMC2955292 | biostudies-literature
| S-EPMC4992462 | biostudies-literature
| S-EPMC2857116 | biostudies-literature
| S-EPMC6843678 | biostudies-literature
| S-EPMC5289073 | biostudies-literature
| S-EPMC5328525 | biostudies-literature
| S-EPMC6497155 | biostudies-literature
| S-EPMC7823563 | biostudies-literature
| S-EPMC4503812 | biostudies-literature
| S-EPMC5469208 | biostudies-literature