Rapid Optical Determination of Enantiomeric Excess, Diastereomeric Excess, and Total Concentration Using Dynamic-Covalent Assemblies: A Demonstration Using 2-Aminocyclohexanol and Chemometrics.
Ontology highlight
ABSTRACT: Optical analysis of reaction parameters such as enantiomeric excess (ee), diastereomeric excess (de), and yield are becoming increasingly useful as assays for differing functional groups become available. These assays typically exploit reversible covalent or noncovalent assemblies that impart optical signals, commonly circular dichroism (CD), that are indicative of the stereochemistry and ee at a stereocenter proximal to the functional group of interest. Very few assays have been reported that determine ee and de when two stereocenters are present, and none have targeted two different functional groups that are vicinal and lack chromophores entirely. Using a CD assay that targets chiral secondary alcohols, a separate CD assay for chiral primary amines, a UV-vis assay for de, and a fluorescence assay for concentration, we demonstrate a work-flow for speciation of the enantiomers and diastereomers of 2-aminocyclohexanol as a test-bed analyte. Because of the fact the functional groups are vicinal, we found that the ee determination at the two stereocenters is influenced by the adjacent center, and this led us to implement a chemometric patterning approach, resulting in a 4% absolute error in full speciation of the four stereoisomers. The procedure presented herein would allow for the total speciation of around 96 reactions in 27 min using a high-throughput experimentation routine. While 2-aminocyclohexanol is used to demonstrate the methods, the general workflow should be amenable to analysis of other stereoisomers when two stereocenters are present.
SUBMITTER: Herrera BT
PROVIDER: S-EPMC7497656 | biostudies-literature | 2019 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA