Unknown

Dataset Information

0

A targeted reactivation of latent HIV-1 using an activator vector in patient samples from acute infection.


ABSTRACT: BACKGROUND:During combined anti-retroviral treatment, a latent HIV reservoir persists within resting memory CD4 T cells that initiates viral recrudescence upon treatment interruption. Strategies for HIV-1 cure have largely focused on latency reversing agents (LRAs) capable of reactivating and eliminating this viral reservoir. Previously investigated LRAs have largely failed to achieve a robust latency reversal sufficient for reduction of latent HIV pool or the potential of virus-free remission in the absence of treatment. METHODS:We utilize a polyvalent virus-like particle (VLP) formulation called Activator Vector (ACT-VEC) to 'shock' provirus into transcriptional activity. Ex vivo co-culture experiments were used to evaluate the efficacy of ACT-VEC in relation to other LRAs in individuals diagnosed and treated during the acute stage of infection. IFN-? ELISpot, qRT-PCR and Illumina MiSeq were used to evaluate antigenicity, latency reversal, and diversity of induced virus respectively. FINDINGS:Using samples from HIV+ patients diagnosed and treated at acute/early infection, we demonstrate that ACT-VEC can reverse latency in HIV infected CD4 T cells to a greater extent than other major recall antigens as stimuli or even mitogens such as PMA/Iono. Furthermore, ACT-VEC activates more latent HIV-1 than clinically tested HDAC inhibitors or protein kinase C agonists. INTERPRETATION:Taken together, these results show that ACT-VEC can induce HIV reactivation from latently infected CD4 T cells collected from participants on first line combined antiretroviral therapy for at least two years after being diagnosed and treated at acute/early stage of infection. These findings could provide guidance to possible targeted cure strategies and treatments. FUNDING:NIH and CIHR.

SUBMITTER: Mann JFS 

PROVIDER: S-EPMC7502668 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background</h4>During combined anti-retroviral treatment, a latent HIV reservoir persists within resting memory CD4 T cells that initiates viral recrudescence upon treatment interruption. Strategies for HIV-1 cure have largely focused on latency reversing agents (LRAs) capable of reactivating and eliminating this viral reservoir. Previously investigated LRAs have largely failed to achieve a robust latency reversal sufficient for reduction of latent HIV pool or the potential of virus-free rem  ...[more]

Similar Datasets

| S-EPMC4786915 | biostudies-literature
| S-EPMC4870680 | biostudies-literature
| S-EPMC3523124 | biostudies-literature
| S-EPMC4392775 | biostudies-literature
| S-EPMC154479 | biostudies-literature
| S-EPMC3435210 | biostudies-literature
| S-EPMC4383768 | biostudies-literature
| S-EPMC4504130 | biostudies-literature
| S-EPMC5709488 | biostudies-literature
| S-EPMC4774903 | biostudies-literature