Efficient propagation of suspended HL-60 cells in a disposable bioreactor supporting wave-induced agitation at various Reynolds number.
Ontology highlight
ABSTRACT: Growth of human nonadherent HL-60 cell cultures performed in disposable bioreactor under various hydrodynamic conditions of 2-D wave-assisted agitation has been compared and discussed. Influence of Reynolds number for liquid (ReL) and the kLa coefficient, as key parameters characterized the bioprocessing of HL-60 cells in ReadyToProcess WAVETM 25 system, on reached values of the apparent maximal specific growth rate (?max) and the specific yield of biomass (Y*X/S) has been identified. The values of ReL (i.e., 510-10,208), as well as kLa coefficient (i.e., 2.83-13.55 h-1), have been estimated for the cultures subjected to wave-induced mixing, based on simplified dimensionless correlation for various presents of WAVE 25 system. The highest values of apparent ?max?=?0.038 h-1 and Y*X/S?=?25.64?×?108 cells gglc-1 have been noted for cultures independently performed at wave-induced agitation characterized by ReL equaled to 5104 and 510, respectively. The presented results have high applicability potential in scale-up of bioprocesses focused on nonadherent animal cells, or in the case of any application of disposable bioreactors presenting similitude.
SUBMITTER: Wierzchowski K
PROVIDER: S-EPMC7511289 | biostudies-literature | 2020 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA