Unknown

Dataset Information

0

Dimethyl 3,3'-dithiobispropionimidate-functionalized diatomaceous earth particles for efficient biomolecule separation.


ABSTRACT: The early diagnosis and monitoring of cancers are key factors in effective cancer treatment. Particularly, the separation of biomolecules is an essential step for both diagnostic and analytical purposes. However, the current techniques used to isolate biomolecules are intensive, laborious, and require multiple instruments as well as repeated sample preparations to separate each biomolecule. Thus, an efficient separation system that can simultaneously separate biomolecules from scarce samples is highly desirable. Hence, in this study, we developed a biosilica-based syringe filtration system for the efficient separation of biomolecules from cancer samples using amine-modified diatomaceous earth (AD) with dimethyl 3,3'-dithiobispropionimidate (DTBP). The syringe filter can be an efficient and rapid tool for use in various procedures without complex instruments. The DTBP-based AD system was combined with the syringe filter system for nucleic acid and protein separation from various cancer cells. We demonstrated the efficacy of the DTBP-based AD in a single-filter system for the efficient separation of DNA and proteins within 40 min. This DTBP-based AD syringe filter system showed good rapidity, efficiency, and affordability in the separation of biomolecules from single samples for the early diagnosis and clinical analysis of cancers.

SUBMITTER: Jang YO 

PROVIDER: S-EPMC7519118 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dimethyl 3,3'-dithiobispropionimidate-functionalized diatomaceous earth particles for efficient biomolecule separation.

Jang Yoon Ok YO   Noh Geun Su GS   Liu Huifang H   Koo Bonhan B   Qiao Zhen Z   Shin Yong Y  

Scientific reports 20200924 1


The early diagnosis and monitoring of cancers are key factors in effective cancer treatment. Particularly, the separation of biomolecules is an essential step for both diagnostic and analytical purposes. However, the current techniques used to isolate biomolecules are intensive, laborious, and require multiple instruments as well as repeated sample preparations to separate each biomolecule. Thus, an efficient separation system that can simultaneously separate biomolecules from scarce samples is  ...[more]

Similar Datasets

| S-EPMC9501419 | biostudies-literature
| S-EPMC10975038 | biostudies-literature
| S-EPMC8542915 | biostudies-literature
| S-EPMC4766563 | biostudies-literature
| S-EPMC5406527 | biostudies-other
| S-EPMC10491979 | biostudies-literature
| S-EPMC4658053 | biostudies-literature
| S-EPMC10038089 | biostudies-literature
| S-EPMC7448063 | biostudies-literature
| S-EPMC7127695 | biostudies-literature