Global identification and characterization of miRNA family members responsive to potassium deprivation in wheat (Triticum aestivum L.).
Ontology highlight
ABSTRACT: Potassium (K) is essential for plant growth and stress responses. MicroRNAs (miRNAs) are involved in adaptation to nutrient deprivation through modulating gene expression. Here, we identified the miRNAs responsive to K deficiency in Triticum aestivum based on high-throughput small RNA sequencing analyses. Eighty-nine miRNAs, including 68 previously reported ones and 21 novel ones, displayed differential expression under K deficiency. In Gene Ontology and Kyoto Encyclopedia and Genome analyses, the putative target genes of the differentially expressed miRNAs were categorized into functional groups associated with ADP-binding activity, secondary metabolic pathways, and biosynthesis and metabolism. Functional characterization of tae-miR408, an miRNA significantly down-regulated under K deficiency, revealed its important role in mediating low-K tolerance. Compared with wild type, transgenic tobacco lines overexpressing tae-miR408 showed significantly improved K uptake, biomass, photosynthesis, and reactive oxygen species scavenging under K deficiency. These results show that distinct miRNAs function in the plant response to K deficiency through regulating target genes involved in energy metabolism and various secondary metabolic pathways. Our findings shed light on the plant response to K deficiency mediated by miRNAs in T. aestivum. Distinct miRNAs, such as tae-miR408, are valuable targets for generating crop varieties with improved K-use efficiency.
SUBMITTER: Zhao Y
PROVIDER: S-EPMC7519128 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA