Project description:BackgroundThe ongoing coronavirus disease 2019 (COVID-19) pandemic has caused a tremendous health burden and impact on the world economy. The UK Government implemented the biggest lockdown of society during peacetime in British history at the end of March 2020, aiming to contain the rapid spread of the virus. The UK lockdown was maintained for 7 weeks, but the effectiveness of the control measures in suppressing disease transmission remains incompletely understood.MethodsA Bayesian SEIR (susceptible-exposed-infected-removed) epidemiological model was used to rebuild the local transmission dynamics of the spread of COVID-19 in nine regions of England.ResultsThe basic reproduction number (R0) in England was found to be relatively high compared with China. The estimate of the temporally varying effective reproduction number (Rt) suggests that the control measures, especially the forced lockdown, were effective to reduce transmissibility and curb the COVID-19 epidemic. Although the overall incidence rate in the UK has declined, forecasting highlights the possibility of a second epidemic wave in several regions.ConclusionThis study enhances understanding of the current outbreak and the effectiveness of control measures in the UK.
Project description:BackgroundHong Kong contained COVID-19 for two years but experienced a large epidemic of Omicron BA.2 in early 2022 and endemic transmission of Omicron subvariants thereafter. We reflected on pandemic preparedness and responses by assessing COVID-19 transmission and associated disease burden in the context of implementation of various public health and social measures (PHSMs).MethodsWe examined the use and impact of pandemic controls in Hong Kong by analysing data on more than 1.7 million confirmed COVID-19 cases and characterizing the temporal changes non-pharmaceutical and pharmaceutical interventions implemented from January 2020 through to 30 December 2022. We estimated the daily effective reproductive number (Rt) to track changes in transmissibility and effectiveness of community-based measures against infection over time. We examined the temporal changes of pharmaceutical interventions, mortality rate and case-fatality risks (CFRs), particularly among older adults.FindingsHong Kong experienced four local epidemic waves predominated by the ancestral strain in 2020 and early 2021 and prevented multiple SARS-CoV-2 variants from spreading in the community before 2022. Strict travel-related, case-based, and community-based measures were increasingly tightened in Hong Kong over the first two years of the pandemic. However, even very stringent measures were unable to contain the spread of Omicron BA.2 in Hong Kong. Despite high overall vaccination uptake (>70% with at least two doses), high mortality was observed during the Omicron BA.2 wave due to lower vaccine coverage (42%) among adults ≥65 years of age. Increases in antiviral usage and vaccination uptake over time through 2022 was associated with decreased case fatality risks.InterpretationIntegrated strict measures were able to reduce importation risks and interrupt local transmission to contain COVID-19 transmission and disease burden while awaiting vaccine development and rollout. Increasing coverage of pharmaceutical interventions among high-risk groups reduced infection-related mortality and mitigated the adverse health impact of the pandemic.FundingHealth and Medical Research Fund.
Project description:Thailand was the first country reporting the first Coronavirus disease 2019 (COVID-19) infected individual outside mainland China. Here we delineated the course of the COVID-19 outbreak together with the timeline of the control measures and public health policies employed by the Thai government during the first wave of the COVID-19 outbreak in Thailand. Based on the comprehensive epidemiological data, we reconstructed the dynamics of COVID-19 transmission in Thailand using a stochastic modeling approach. Our stochastic model incorporated the effects of individual heterogeneity in infectiousness on disease transmission, which allows us to capture relevant features of superspreading events. We found that our model could accurately capture the transmission dynamics of the first COVID-19 epidemic wave in Thailand. The model predicted that at the end of the first wave, the number of cumulative confirmed cases was 3091 (95%CI: 2782-3400). We also estimated the time-varying reproduction number (Rt) during the first epidemic wave. We found that after implementing the nationwide interventions, the Rt in Thailand decreased from the peak value of 5.67 to a value below one in less than one month, indicating that the control measures employed by the Thai government during the first COVID-19 epidemic wave were effective. Finally, the effects of transmission heterogeneity and control measures on the likelihood of outbreak extinction were also investigated.
Project description:Manuscript describes the daily dynamics of transcriptional responses in whole blood, from acute to convalescent phase, in severe and non-severe COVID-19 patients.
Project description:India imposed one of the world's strictest population-wide lockdowns on March 25, 2020 for COVID-19. We estimated epidemiological parameters, evaluated the effect of control measures on the epidemic in India, and explored strategies to exit lockdown. We obtained patient-level data to estimate the delay from onset to confirmation and the asymptomatic proportion. We estimated the basic and time-varying reproduction number (R0 and Rt) after adjusting for imported cases and delay to confirmation using incidence data from March 4 to April 25, 2020. Using a SEIR-QDPA model, we simulated lockdown relaxation scenarios and increased testing to evaluate lockdown exit strategies. R0 for India was estimated to be 2·08, and the Rt decreased from 1·67 on March 30 to 1·16 on April 22. We observed that the delay from the date of lockdown relaxation to the start of the second wave increases as lockdown is extended farther after the first wave peak-this delay is longer if lockdown is relaxed gradually. Aggressive measures such as lockdowns may be inherently enough to suppress an outbreak; however, other measures need to be scaled up as lockdowns are relaxed. Lower levels of social distancing when coupled with a testing ramp-up could achieve similar outbreak control as an aggressive social distancing regime where testing was not increased.
Project description:During the current COVID-19 pandemic, governments must make decisions based on a variety of information including estimations of infection spread, health care capacity, economic and psychosocial considerations. The disparate validity of current short-term forecasts of these factors is a major challenge to governments. By causally linking an established epidemiological spread model with dynamically evolving psychosocial variables, using Bayesian inference we estimate the strength and direction of these interactions for German and Danish data of disease spread, human mobility, and psychosocial factors based on the serial cross-sectional COVID-19 Snapshot Monitoring (COSMO; N = 16,981). We demonstrate that the strength of cumulative influence of psychosocial variables on infection rates is of a similar magnitude as the influence of physical distancing. We further show that the efficacy of political interventions to contain the disease strongly depends on societal diversity, in particular group-specific sensitivity to affective risk perception. As a consequence, the model may assist in quantifying the effect and timing of interventions, forecasting future scenarios, and differentiating the impact on diverse groups as a function of their societal organization. Importantly, the careful handling of societal factors, including support to the more vulnerable groups, adds another direct instrument to the battery of political interventions fighting epidemic spread.
Project description:BackgroundAfter relaxing social distancing measures, South Korea experienced a resurgent second epidemic wave of coronavirus disease 2019 (COVID-19). In this study, we aimed to identify the transmission dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and assess the impact of COVID-19 case finding and contact tracing in each epidemic wave.MethodsWe collected data on COVID-19 cases published by local public health authorities in South Korea and divided the study into two epidemic periods (19 January-19 April 2020 for the first epidemic wave and 20 April-11 August 2020 for the second epidemic wave). To identify changes in the transmissibility of SARS-CoV-2, the daily effective reproductive number (Rt) was estimated using the illness onset of the cases. Furthermore, to identify the characteristics of each epidemic wave, frequencies of cluster types were measured, and age-specific transmission probability matrices and serial intervals were estimated. The proportion of asymptomatic cases and cases with unknown sources of infection were also estimated to assess the changes of infections identified as cases in each wave.ResultsIn early May 2020, within 2-weeks of a relaxation in strict social distancing measures, Rt increased rapidly from 0.2 to 1.8 within a week and was around 1 until early July 2020. In both epidemic waves, the most frequent cluster types were religious-related activities and transmissions among the same age were more common. Furthermore, children were rarely infectors or infectees, and the mean serial intervals were similar (~ 3 days) in both waves. The proportion of asymptomatic cases at presentation increased from 22% (in the first wave) to 27% (in the second wave), while the cases with unknown sources of infection were similar in both waves (22 and 24%, respectively).ConclusionsOur study shows that relaxing social distancing measures was associated with increased SARS-CoV-2 transmission despite rigorous case findings in South Korea. Along with social distancing measures, the enhanced contact tracing including asymptomatic cases could be an efficient approach to control further epidemic waves.
Project description:BackgroundOn March 9, 2020, the first COVID-19 case was reported in Jodhpur, Rajasthan, in the northwestern part of India. Understanding the epidemiology of COVID-19 at a local level is becoming increasingly important to guide measures to control the pandemic.ObjectiveThe aim of this study was to estimate the serial interval and basic reproduction number (R0) to understand the transmission dynamics of the COVID-19 outbreak at a district level. We used standard mathematical modeling approaches to assess the utility of these factors in determining the effectiveness of COVID-19 responses and projecting the size of the epidemic.MethodsContact tracing of individuals infected with SARS-CoV-2 was performed to obtain the serial intervals. The median and 95th percentile values of the SARS-CoV-2 serial interval were obtained from the best fits with the weibull, log-normal, log-logistic, gamma, and generalized gamma distributions. Aggregate and instantaneous R0 values were derived with different methods using the EarlyR and EpiEstim packages in R software.ResultsThe median and 95th percentile values of the serial interval were 5.23 days (95% CI 4.72-5.79) and 13.20 days (95% CI 10.90-18.18), respectively. R0 during the first 30 days of the outbreak was 1.62 (95% CI 1.07-2.17), which subsequently decreased to 1.15 (95% CI 1.09-1.21). The peak instantaneous R0 values obtained using a Poisson process developed by Jombert et al were 6.53 (95% CI 2.12-13.38) and 3.43 (95% CI 1.71-5.74) for sliding time windows of 7 and 14 days, respectively. The peak R0 values obtained using the method by Wallinga and Teunis were 2.96 (95% CI 2.52-3.36) and 2.92 (95% CI 2.65-3.22) for sliding time windows of 7 and 14 days, respectively. R0 values of 1.21 (95% CI 1.09-1.34) and 1.12 (95% CI 1.03-1.21) for the 7- and 14-day sliding time windows, respectively, were obtained on July 6, 2020, using method by Jombert et al. Using the method by Wallinga and Teunis, values of 0.32 (95% CI 0.27-0.36) and 0.61 (95% CI 0.58-0.63) were obtained for the 7- and 14-day sliding time windows, respectively. The projection of cases over the next month was 2131 (95% CI 1799-2462). Reductions of transmission by 25% and 50% corresponding to reasonable and aggressive control measures could lead to 58.7% and 84.0% reductions in epidemic size, respectively.ConclusionsThe projected transmission reductions indicate that strengthening control measures could lead to proportionate reductions of the size of the COVID-19 epidemic. Time-dependent instantaneous R0 estimation based on the process by Jombart et al was found to be better suited for guiding COVID-19 response at the district level than overall R0 or instantaneous R0 estimation by the Wallinga and Teunis method. A data-driven approach at the local level is proposed to be useful in guiding public health strategy and surge capacity planning.
Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:Since the first case reported of SARS-CoV-2 the end of December 2019 in China, the number of cases quickly climbed following an exponential growth trend, demonstrating that a global pandemic is possible. As of December 3, 2020, the total number of cases reported are around 65,527,000 contagions worldwide, and 1,524,000 deaths affecting 218 countries and territories. In this scenario, Spain is one of the countries that has suffered in a hard way, the ongoing epidemic caused by the novel coronavirus SARS-CoV-2, namely COVID-19 disease. In this paper, we present the utilization of phenomenological epidemic models to characterize the two first outbreak waves of COVID-19 in Spain. The study is driven using a two-step phenomenological epidemic approach. First, we use a simple generalized growth model to fit the main parameters at the early epidemic phase; later, we apply our previous finding over a logistic growth model to that characterize both waves completely. The results show that even in the absence of accurate data series, it is possible to characterize the curves of case incidence, and construct a short-term forecast of 60 days in the near time horizon, in relation to the expected total duration of the pandemic.