Unknown

Dataset Information

0

TDP-43 dysfunction results in R-loop accumulation and DNA replication defects.


ABSTRACT: TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.

SUBMITTER: Wood M 

PROVIDER: S-EPMC7648616 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

TDP-43 dysfunction results in R-loop accumulation and DNA replication defects.

Wood Matthew M   Quinet Annabel A   Lin Yea-Lih YL   Davis Albert A AA   Pasero Philippe P   Ayala Yuna M YM   Vindigni Alessandro A  

Journal of cell science 20201030 20


TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-4  ...[more]

Similar Datasets

| S-EPMC5688077 | biostudies-literature
| S-EPMC2478749 | biostudies-literature
| S-EPMC7755276 | biostudies-literature
| S-EPMC3843686 | biostudies-literature
| S-EPMC6728177 | biostudies-literature
| S-EPMC8608685 | biostudies-literature
| S-EPMC9205938 | biostudies-literature
| S-EPMC3411774 | biostudies-literature
| S-EPMC5584112 | biostudies-literature
| S-EPMC5377819 | biostudies-literature