Unknown

Dataset Information

0

Genome-wide pathway-based quantitative multiple phenotypes analysis.


ABSTRACT: For complex diseases, genome-wide pathway association studies have become increasingly promising. Currently, however, pathway-based association analysis mainly focus on a single phenotype, which may insufficient to describe the complex diseases and physiological processes. This work proposes a combination model to evaluate the association between a pathway and multiple phenotypes and to reduce the run time based on asymptotic results. For a single phenotype, we propose a semi-supervised maximum kernel-based U-statistics (mSKU) method to assess the pathway-based association analysis. For multiple phenotypes, we propose the fisher combination function with dependent phenotypes (FC) to transform the p-values between the pathway and each marginal phenotype individually to achieve pathway-based multiple phenotypes analysis. With real data from the Alzheimer Disease Neuroimaging Initiative (ADNI) study and Human Liver Cohort (HLC) study, the FC-mSKU method allows us to specify which pathways are specific to a single phenotype or contribute to common genetic constructions of multiple phenotypes. If we only focus on single-phenotype tests, we may miss some findings for etiology studies. Through extensive simulation studies, the FC-mSKU method demonstrates its advantages compared with its counterparts.

SUBMITTER: Deng Y 

PROVIDER: S-EPMC7657528 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genome-wide pathway-based quantitative multiple phenotypes analysis.

Deng Yamin Y   Wu Shiman S   Fan Huifang H  

PloS one 20201111 11


For complex diseases, genome-wide pathway association studies have become increasingly promising. Currently, however, pathway-based association analysis mainly focus on a single phenotype, which may insufficient to describe the complex diseases and physiological processes. This work proposes a combination model to evaluate the association between a pathway and multiple phenotypes and to reduce the run time based on asymptotic results. For a single phenotype, we propose a semi-supervised maximum  ...[more]

Similar Datasets

| S-EPMC6163116 | biostudies-literature
| S-EPMC4875235 | biostudies-other
| S-EPMC3644646 | biostudies-literature
| S-EPMC3655878 | biostudies-literature
| S-EPMC2678928 | biostudies-literature
| S-EPMC6556901 | biostudies-other
| S-EPMC5065656 | biostudies-literature
| S-EPMC6399257 | biostudies-literature
| S-EPMC3102637 | biostudies-literature
| S-EPMC4595690 | biostudies-literature