Unknown

Dataset Information

0

Conservation analysis of SARS-CoV-2 spike suggests complicated viral adaptation history from bat to human.


ABSTRACT:

Background

The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome (SARS)-CoV-2, has become the most devastating public health emergency in the 21st century and one of the most influential plagues in history. Studies on the origin of SARS-CoV-2 have generally agreed that the virus probably comes from bat, closely related to a bat CoV named BCoV-RaTG13 taken from horseshoe bat (Rhinolophus affinis), with Malayan pangolin (Manis javanica) being a plausible intermediate host. However, due to the relatively low number of SARS-CoV-2-related strains available in public domain, the evolutionary history remains unclear.

Methodology

Nine hundred ninety-five coronavirus sequences from NCBI Genbank and GISAID were obtained and multiple sequence alignment was carried out to categorize SARS-CoV-2 related groups. Spike sequences were analyzed using similarity analysis and conservation analyses. Mutation analysis was used to identify variations within receptor-binding domain (RBD) in spike for SARS-CoV-2-related strains.

Results

We identified a family of SARS-CoV-2-related strains, including the closest relatives, bat CoV RaTG13 and pangolin CoV strains. Sequence similarity analysis and conservation analysis on spike sequence identified that N-terminal domain, RBD and S2 subunit display different degrees of conservation with several coronavirus strains. Mutation analysis on contact sites in SARS-CoV-2 RBD reveals that human-susceptibility probably emerges in pangolin.

Conclusion and implication

We conclude that the spike sequence of SARS-CoV-2 is the result of multiple recombination events during its transmission from bat to human, and we propose a framework of evolutionary history that resolve the relationship of BCoV-RaTG13 and pangolin coronaviruses with SARS-CoV-2.

Lay summary

This study analyses whole-genome and spike sequences of coronavirus from NCBI using phylogenetic and conservation analyses to reconstruct the evolutionary history of severe acute respiratory syndrome (SARS)-CoV-2 and proposes an evolutionary history of spike in the progenitors of SARS-CoV-2 from bat to human through mammal hosts before they recombine into the current form.

SUBMITTER: Lei KC 

PROVIDER: S-EPMC7665476 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| EMPIAR-10999 | biostudies-other
| EMPIAR-10947 | biostudies-other
| S-EPMC7781345 | biostudies-literature
| EMPIAR-10891 | biostudies-other
| EMPIAR-11038 | biostudies-other
| S-EPMC7125587 | biostudies-literature
| S-EPMC8406658 | biostudies-literature
| S-EPMC9169775 | biostudies-literature
| S-EPMC7952905 | biostudies-literature
| EMPIAR-10951 | biostudies-other