Unknown

Dataset Information

0

Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.


ABSTRACT: Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that intermediate denoised images are obtained with associated noise reduction directions towards a final denoised image. The learned workflow allows radiologists-in-the-loop to optimize the denoising depth in a task-specific fashion. Our network was trained with the Mayo LDCT Dataset, and tested on separate chest and abdominal CT exams from Massachusetts General Hospital. The best deep learning reconstructions were systematically compared to the best iterative reconstructions in a double-blinded reader study. This study confirms that our deep learning approach performed either favorably or comparably in terms of noise suppression and structural fidelity, and is much faster than the commercial iterative reconstruction algorithms.

SUBMITTER: Shan H 

PROVIDER: S-EPMC7687920 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.

Shan Hongming H   Padole Atul A   Homayounieh Fatemeh F   Kruger Uwe U   Khera Ruhani Doda RD   Nitiwarangkul Chayanin C   Kalra Mannudeep K MK   Wang Ge G  

Nature machine intelligence 20190610 6


Commercial iterative reconstruction techniques help to reduce CT radiation dose but altered image appearance and artifacts limit their adoptability and potential use. Deep learning has been investigated for low-dose CT (LDCT). Here we design a modularized neural network for LDCT and compared it with commercial iterative reconstruction methods from three leading CT vendors. While popular networks are trained for an end-to-end mapping, our network performs an end-to-process mapping so that interme  ...[more]

Similar Datasets

| S-EPMC8270865 | biostudies-literature
| S-EPMC10957592 | biostudies-literature
| S-EPMC8961013 | biostudies-literature
| S-EPMC4821734 | biostudies-literature
| S-EPMC9317892 | biostudies-literature
| S-EPMC10976956 | biostudies-literature
| S-EPMC8321320 | biostudies-literature
| S-EPMC7170173 | biostudies-literature
| S-EPMC3830436 | biostudies-other
| S-EPMC10827738 | biostudies-literature