Unknown

Dataset Information

0

A Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma.


ABSTRACT: Pseudoprogression (PSP) detection in glioblastoma remains challenging and has important clinical implications. We investigated the potential of machine learning (ML) in improving the performance of PET using O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) for differentiation of tumor progression from PSP in IDH-wildtype glioblastoma. We retrospectively evaluated the PET data of patients with newly diagnosed IDH-wildtype glioblastoma following chemoradiation. Contrast-enhanced MRI suspected PSP/TP and all patients underwent subsequently an additional dynamic FET-PET scan. The modified Response Assessment in Neuro-Oncology (RANO) criteria served to diagnose PSP. We trained a Linear Discriminant Analysis (LDA)-based classifier using FET-PET derived features on a hold-out validation set. The results of the ML model were compared with a conventional FET-PET analysis using the receiver-operating-characteristic (ROC) curve. Of the 44 patients included in this preliminary study, 14 patients were diagnosed with PSP. The mean (TBRmean) and maximum tumor-to-brain ratios (TBRmax) were significantly higher in the TP group as compared to the PSP group (p = 0.014 and p = 0.033, respectively). The area under the ROC curve (AUC) for TBRmax and TBRmean was 0.68 and 0.74, respectively. Using the LDA-based algorithm, the AUC (0.93) was significantly higher than the AUC for TBRmax. This preliminary study shows that in IDH-wildtype glioblastoma, ML-based PSP detection leads to better diagnostic performance.

SUBMITTER: Kebir S 

PROVIDER: S-EPMC7690380 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Preliminary Study on Machine Learning-Based Evaluation of Static and Dynamic FET-PET for the Detection of Pseudoprogression in Patients with IDH-Wildtype Glioblastoma.

Kebir Sied S   Schmidt Teresa T   Weber Matthias M   Lazaridis Lazaros L   Galldiks Norbert N   Langen Karl-Josef KJ   Kleinschnitz Christoph C   Hattingen Elke E   Herrlinger Ulrich U   Lohmann Philipp P   Glas Martin M  

Cancers 20201022 11


Pseudoprogression (PSP) detection in glioblastoma remains challenging and has important clinical implications. We investigated the potential of machine learning (ML) in improving the performance of PET using O-(2-[<sup>18</sup>F]-fluoroethyl)-L-tyrosine (FET) for differentiation of tumor progression from PSP in IDH-wildtype glioblastoma. We retrospectively evaluated the PET data of patients with newly diagnosed IDH-wildtype glioblastoma following chemoradiation. Contrast-enhanced MRI suspected P  ...[more]

Similar Datasets

| S-EPMC8566644 | biostudies-literature
| S-EPMC9154038 | biostudies-literature
| S-EPMC5970234 | biostudies-literature
| S-EPMC6127131 | biostudies-literature
| S-EPMC6827834 | biostudies-literature
| S-EPMC6929203 | biostudies-literature
| S-EPMC4393599 | biostudies-literature
| S-EPMC5817966 | biostudies-literature
| S-EPMC7734785 | biostudies-literature
| S-EPMC11232516 | biostudies-literature