Unknown

Dataset Information

0

Molecular Modeling to Estimate the Diffusion Coefficients of Drugs and Other Small Molecules.


ABSTRACT: Diffusion is a spontaneous process and one of the physicochemical phenomena responsible for molecular transport, the rate of which is governed mainly by the diffusion coefficient; however, few coefficients are available because the measurement of diffusion rates is not straightforward. The translational diffusion coefficient is related by the Stokes-Einstein equation to the approximate radius of the diffusing molecule. Therefore, the stable conformations of small molecules were first calculated by molecular modeling. A simple radius rs and an effective radius re were then proposed and estimated using the stable conformers with the van der Waals radii of atoms. The diffusion coefficients were finally calculated with the Stokes-Einstein equation. The results showed that, for the molecules with strong hydration ability, the diffusion coefficients are best given by re and for other compounds, rs provided the best coefficients, with a reasonably small deviation of ~0.3 × 10-6 cm2/s from the experimental data. This demonstrates the effectiveness of the theoretical estimation approach, suggesting that diffusion coefficients have potential use as an additional molecular property in drug screening.

SUBMITTER: Miyamoto S 

PROVIDER: S-EPMC7709040 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular Modeling to Estimate the Diffusion Coefficients of Drugs and Other Small Molecules.

Miyamoto Shuichi S   Shimono Kazumi K  

Molecules (Basel, Switzerland) 20201116 22


Diffusion is a spontaneous process and one of the physicochemical phenomena responsible for molecular transport, the rate of which is governed mainly by the diffusion coefficient; however, few coefficients are available because the measurement of diffusion rates is not straightforward. The translational diffusion coefficient is related by the Stokes-Einstein equation to the approximate radius of the diffusing molecule. Therefore, the stable conformations of small molecules were first calculated  ...[more]

Similar Datasets

| S-EPMC5656982 | biostudies-literature
| S-EPMC5943679 | biostudies-literature
| S-EPMC5053177 | biostudies-literature
| S-EPMC3271706 | biostudies-literature
| S-EPMC46400 | biostudies-other
| S-EPMC4466742 | biostudies-literature
| S-EPMC5861730 | biostudies-literature
| S-EPMC6748671 | biostudies-literature
| S-EPMC3716799 | biostudies-other
| S-EPMC6750896 | biostudies-literature