Unknown

Dataset Information

0

Engineering precision nanoparticles for drug delivery.


ABSTRACT: In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.

SUBMITTER: Mitchell MJ 

PROVIDER: S-EPMC7717100 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Engineering precision nanoparticles for drug delivery.

Mitchell Michael J MJ   Billingsley Margaret M MM   Haley Rebecca M RM   Wechsler Marissa E ME   Peppas Nicholas A NA   Langer Robert R  

Nature reviews. Drug discovery 20201204 2


In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficac  ...[more]

Similar Datasets

| S-EPMC3565338 | biostudies-literature
| S-EPMC6389875 | biostudies-literature
| S-EPMC9252171 | biostudies-literature
| S-EPMC4392984 | biostudies-other
| S-EPMC8691416 | biostudies-literature
| S-EPMC6942644 | biostudies-literature
| S-EPMC6415439 | biostudies-literature
| S-EPMC5568647 | biostudies-literature
| S-EPMC4087095 | biostudies-literature
| S-EPMC8009556 | biostudies-literature