Unknown

Dataset Information

0

The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia.


ABSTRACT: Mutations in the calcium-binding protein calsequestrin cause the highly lethal familial arrhythmia catecholaminergic polymorphic ventricular tachycardia (CPVT). In vivo, calsequestrin multimerizes into filaments, but there is not yet an atomic-resolution structure of a calsequestrin filament. We report a crystal structure of a human cardiac calsequestrin filament with supporting mutational analysis and in vitro filamentation assays. We identify and characterize a new disease-associated calsequestrin mutation, S173I, that is located at the filament-forming interface, and further show that a previously reported dominant disease mutation, K180R, maps to the same surface. Both mutations disrupt filamentation, suggesting that disease pathology is due to defects in multimer formation. An ytterbium-derivatized structure pinpoints multiple credible calcium sites at filament-forming interfaces, explaining the atomic basis of calsequestrin filamentation in the presence of calcium. Our study thus provides a unifying molecular mechanism through which dominant-acting calsequestrin mutations provoke lethal arrhythmias.

SUBMITTER: Titus EW 

PROVIDER: S-EPMC7718342 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3509583 | biostudies-literature
| S-EPMC208831 | biostudies-literature
| S-EPMC5089849 | biostudies-literature
| S-EPMC5472220 | biostudies-literature
| S-EPMC4164947 | biostudies-literature
| S-EPMC2797393 | biostudies-literature
| S-EPMC3053436 | biostudies-literature
| S-EPMC5691160 | biostudies-literature
| S-EPMC5662055 | biostudies-literature
| S-EPMC7486124 | biostudies-literature