Unknown

Dataset Information

0

Detecting strong signals in gene perturbation experiments: An adaptive approach with power guarantee and FDR control.


ABSTRACT: The perturbation of a transcription factor should affect the expression levels of its direct targets. However, not all genes showing changes in expression are direct targets. To increase the chance of detecting direct targets, we propose a modified two-group model where the null group corresponds to genes which are not direct targets, but can have small non-zero effects. We model the behavior of genes from the null set by a Gaussian distribution with unknown variance ? 2. To estimate ? 2, we focus on a simple estimation approach, the iterated empirical Bayes estimation. We conduct a detailed analysis of the properties of the iterated EB estimate and provide theoretical guarantee of its good performance under mild conditions. We provide simulations comparing the new modeling approach with existing methods, and the new approach shows more stable and better performance under different situations. We also apply it to a real data set from gene knock-down experiments and obtained better results compared with the original two-group model testing for non-zero effects.

SUBMITTER: Guan L 

PROVIDER: S-EPMC7731979 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Detecting strong signals in gene perturbation experiments: An adaptive approach with power guarantee and FDR control.

Guan Leying L   Chen Xi X   Wong Wing Hung WH  

Journal of the American Statistical Association 20190814


The perturbation of a transcription factor should affect the expression levels of its direct targets. However, not all genes showing changes in expression are direct targets. To increase the chance of detecting direct targets, we propose a modified two-group model where the null group corresponds to genes which are not direct targets, but can have small non-zero effects. We model the behavior of genes from the null set by a Gaussian distribution with unknown variance <i>τ</i> <sup>2</sup>. To es  ...[more]

Similar Datasets

| S-EPMC2949886 | biostudies-other
| S-EPMC9805573 | biostudies-literature
| S-EPMC3203519 | biostudies-literature
| S-EPMC8258607 | biostudies-literature
| S-EPMC3129526 | biostudies-literature
| S-EPMC8329765 | biostudies-literature
| S-EPMC3925987 | biostudies-literature
| S-EPMC5474365 | biostudies-literature
| S-EPMC3526407 | biostudies-literature
| S-EPMC3399698 | biostudies-literature