Ontology highlight
ABSTRACT:
SUBMITTER: Christie AP
PROVIDER: S-EPMC7733498 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
Christie Alec P AP Abecasis David D Adjeroud Mehdi M Alonso Juan C JC Amano Tatsuya T Anton Alvaro A Baldigo Barry P BP Barrientos Rafael R Bicknell Jake E JE Buhl Deborah A DA Cebrian Just J Ceia Ricardo S RS Cibils-Martina Luciana L Clarke Sarah S Claudet Joachim J Craig Michael D MD Davoult Dominique D De Backer Annelies A Donovan Mary K MK Eddy Tyler D TD França Filipe M FM Gardner Jonathan P A JPA Harris Bradley P BP Huusko Ari A Jones Ian L IL Kelaher Brendan P BP Kotiaho Janne S JS López-Baucells Adrià A Major Heather L HL Mäki-Petäys Aki A Martín Beatriz B Martín Carlos A CA Martin Philip A PA Mateos-Molina Daniel D McConnaughey Robert A RA Meroni Michele M Meyer Christoph F J CFJ Mills Kade K Montefalcone Monica M Noreika Norbertas N Palacín Carlos C Pande Anjali A Pitcher C Roland CR Ponce Carlos C Rinella Matt M Rocha Ricardo R Ruiz-Delgado María C MC Schmitter-Soto Juan J JJ Shaffer Jill A JA Sharma Shailesh S Sher Anna A AA Stagnol Doriane D Stanley Thomas R TR Stokesbury Kevin D E KDE Torres Aurora A Tully Oliver O Vehanen Teppo T Watts Corinne C Zhao Qingyuan Q Sutherland William J WJ
Nature communications 20201211 1
Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by ...[more]