Unknown

Dataset Information

0

Selectivity over coverage in de novo sequencing of IgGs.


ABSTRACT: Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies de novo. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD) to provide straightforward-to-read sequence ladders for the variable parts of both the light and heavy chains, with a preference for the functionally important CDR3. We optimized this method on the therapeutic antibody Trastuzumab and demonstrate its applicability on two monoclonal quartets of the four IgG subclasses, IgG1, IgG2, IgG3 and IgG4. The method is based on proteolytically separating the variable F(ab')2 part from the conserved Fc part, whereafter the F(ab')2 portions are mass-analyzed and fragmented by ECD. Pure ECD, without additional collisional activation, leads to straightforward-to-read sequence tags covering the CDR3 of both the light and heavy chains. Using molecular modelling and structural analysis, we discuss and explain this selective fragmentation behavior and describe how structural features of the different IgG subclasses lead to distinct fragmentation patterns. Overall, we foresee that pure ECD on F(ab')2 or Fab molecules can become a valuable tool for the de novo sequencing of serum antibodies.

SUBMITTER: den Boer MA 

PROVIDER: S-EPMC7814886 | biostudies-literature | 2020 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selectivity over coverage in <i>de novo</i> sequencing of IgGs.

den Boer Maurits A MA   Greisch Jean-Francois JF   Tamara Sem S   Bondt Albert A   Heck Albert J R AJR  

Chemical science 20201006 43


Although incredibly diverse in specificity, millions of unique Immunoglobulin G (IgG) molecules in the human antibody repertoire share most of their amino acid sequence. These constant parts of IgG do not yield any useful information in attempts to sequence antibodies <i>de novo</i>. Therefore, methods focusing solely on the variable regions and providing unambiguous sequence reads are strongly advantageous. We report a mass spectrometry-based method that uses electron capture dissociation (ECD)  ...[more]

Similar Datasets

| S-EPMC4779561 | biostudies-literature
| S-EPMC3412931 | biostudies-literature
| S-EPMC6380431 | biostudies-literature
| S-EPMC5547637 | biostudies-literature
| S-EPMC3216106 | biostudies-literature
| S-EPMC2754211 | biostudies-literature
| S-EPMC4604512 | biostudies-literature
| S-EPMC2891972 | biostudies-literature
| S-EPMC6280873 | biostudies-other
| S-EPMC3018809 | biostudies-other