Unknown

Dataset Information

0

Application of subject-specific adaptive mechanical loading for bone healing in a mouse tail vertebral defect.


ABSTRACT: Methods to repair bone defects arising from trauma, resection, or disease, continue to be sought after. Cyclic mechanical loading is well established to influence bone (re)modelling activity, in which bone formation and resorption are correlated to micro-scale strain. Based on this, the application of mechanical stimulation across a bone defect could improve healing. However, if ignoring the mechanical integrity of defected bone, loading regimes have a high potential to either cause damage or be ineffective. This study explores real-time finite element (rtFE) methods that use three-dimensional structural analyses from micro-computed tomography images to estimate effective peak cyclic loads in a subject-specific and time-dependent manner. It demonstrates the concept in a cyclically loaded mouse caudal vertebral bone defect model. Using rtFE analysis combined with adaptive mechanical loading, mouse bone healing was significantly improved over non-loaded controls, with no incidence of vertebral fractures. Such rtFE-driven adaptive loading regimes demonstrated here could be relevant to clinical bone defect healing scenarios, where mechanical loading can become patient-specific and more efficacious. This is achieved by accounting for initial bone defect conditions and spatio-temporal healing, both being factors that are always unique to the patient.

SUBMITTER: Malhotra A 

PROVIDER: S-EPMC7820598 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Application of subject-specific adaptive mechanical loading for bone healing in a mouse tail vertebral defect.

Malhotra Angad A   Walle Matthias M   Paul Graeme R GR   Kuhn Gisela A GA   Müller Ralph R  

Scientific reports 20210121 1


Methods to repair bone defects arising from trauma, resection, or disease, continue to be sought after. Cyclic mechanical loading is well established to influence bone (re)modelling activity, in which bone formation and resorption are correlated to micro-scale strain. Based on this, the application of mechanical stimulation across a bone defect could improve healing. However, if ignoring the mechanical integrity of defected bone, loading regimes have a high potential to either cause damage or be  ...[more]

Similar Datasets

| S-EPMC8262576 | biostudies-literature
| S-EPMC3307871 | biostudies-literature
| S-EPMC3595617 | biostudies-other
| S-EPMC2904482 | biostudies-literature
| S-EPMC7059829 | biostudies-literature
| S-EPMC3273934 | biostudies-literature
| S-EPMC3039044 | biostudies-literature
2010-06-12 | E-GEOD-22286 | biostudies-arrayexpress
| S-EPMC3179310 | biostudies-literature
| S-EPMC4154721 | biostudies-literature