MRI Texture Analysis for the Prediction of Stereotactic Radiosurgery Outcomes in Brain Metastases from Lung Cancer.
Ontology highlight
ABSTRACT: This study aims to evaluate the utility of texture analysis in predicting the outcome of stereotactic radiosurgery (SRS) for brain metastases from lung cancer. From 83 patients with lung cancer who underwent SRS for brain metastasis, a total of 118 metastatic lesions were included. Two neuroradiologists independently performed magnetic resonance imaging (MRI)-based texture analysis using the Imaging Biomarker Explorer software. Inter-reader reliability as well as univariable and multivariable analyses were performed for texture features and clinical parameters to determine independent predictors for local progression-free survival (PFS) and overall survival (OS). Furthermore, Harrell's concordance index (C-index) was used to assess the performance of the independent texture features. The primary tumor histology of small cell lung cancer (SCLC) was the only clinical parameter significantly associated with local PFS in multivariable analysis. Run-length non-uniformity (RLN) and short-run emphasis were the independent texture features associated with local PFS. In the non-SCLC (NSCLC) subgroup analysis, RLN and local range mean were associated with local PFS. The C-index of independent texture features was 0.79 for the all-patients group and 0.73 for the NSCLC subgroup. In conclusion, texture analysis on pre-treatment MRI of lung cancer patients with brain metastases may have a role in predicting SRS response.
SUBMITTER: Park JH
PROVIDER: S-EPMC7827024 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA