Unknown

Dataset Information

0

RAC1 induces nuclear alterations through the LINC complex to enhance melanoma invasiveness.


ABSTRACT: RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in part through the cytoskeleton, which connects to the nucleoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we unravel the role of RAC1 as an orchestrator of nuclear morphology in melanoma cells. We demonstrate that activated RAC1 promotes nuclear alterations through its effector PAK1 and the tubulin cytoskeleton, thereby enhancing migration and intravasation of melanoma cells. Disruption of the LINC complex prevented RAC1-induced nuclear alterations and the invasive properties of melanoma cells. Thus, RAC1 induces nuclear morphology alterations through microtubules and the LINC complex to promote an invasive phenotype in melanoma cells.

SUBMITTER: Colon-Bolea P 

PROVIDER: S-EPMC7851868 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

RAC1 induces nuclear alterations through the LINC complex to enhance melanoma invasiveness.

Colón-Bolea Paula P   García-Gómez Rocío R   Shackleton Sue S   Crespo Piero P   Bustelo Xosé R XR   Casar Berta B  

Molecular biology of the cell 20201007 25


RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in par  ...[more]

Similar Datasets

| S-EPMC3778752 | biostudies-literature
| S-EPMC5584142 | biostudies-literature
| S-EPMC4527691 | biostudies-literature
| S-EPMC4258653 | biostudies-literature
| S-EPMC10337926 | biostudies-literature
| S-EPMC6219386 | biostudies-literature
| S-EPMC7501853 | biostudies-literature
2023-12-20 | GSE245205 | GEO
| S-EPMC5688853 | biostudies-literature
| S-EPMC7758627 | biostudies-literature