Unknown

Dataset Information

0

Global, continental, and national variation in PM2.5, O3, and NO2 concentrations during the early 2020 COVID-19 lockdown.


ABSTRACT: Lockdowns implemented in response to COVID-19 have caused an unprecedented reduction in global economic and transport activity. In this study, variation in the concentration of health-threatening air pollutants (PM2.5, NO2, and O3) pre- and post-lockdown was investigated at global, continental, and national scales. We analyzed ground-based data from >10,000 monitoring stations in 380 cities across the globe. Global-scale results during lockdown (March to May 2020) showed that concentrations of PM2.5 and NO2 decreased by 16.1% and 45.8%, respectively, compared to the baseline period (2015-2019). However, O3 concentration increased by 5.4%. At the continental scale, concentrations of PM2.5 and NO2 substantially dropped in 2020 across all continents during lockdown compared to the baseline, with a maximum reduction of 20.4% for PM2.5 in East Asia and 42.5% for NO2 in Europe. The maximum reduction in O3 was observed in North America (7.8%), followed by Asia (0.7%), while small increases were found in other continents. At the national scale, PM2.5 and NO2 concentrations decreased significantly during lockdown, but O3 concentration showed varying patterns among countries. We found maximum reductions of 50.8% for PM2.5 in India and 103.5% for NO2 in Spain. The maximum reduction in O3 (22.5%) was found in India. Improvements in air quality were temporary as pollution levels increased in cities since lockdowns were lifted. We posit that these unprecedented changes in air pollutants were mainly attributable to reductions in traffic and industrial activities. Column reductions could also be explained by meteorological variability and a decline in emissions caused by environmental policy regulations. Our results have implications for the continued implementation of strict air quality policies and emission control strategies to improve environmental and human health.

SUBMITTER: He C 

PROVIDER: S-EPMC7867708 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Global, continental, and national variation in PM<sub>2.5</sub>, O<sub>3</sub>, and NO<sub>2</sub> concentrations during the early 2020 COVID-19 lockdown.

He Chao C   Hong Song S   Zhang Lu L   Mu Hang H   Xin Aixuan A   Zhou Yiqi Y   Liu Jinke J   Liu Nanjian N   Su Yuming Y   Tian Ya Y   Ke Biqin B   Wang Yanwen Y   Yang Lu L  

Atmospheric pollution research 20210207 3


Lockdowns implemented in response to COVID-19 have caused an unprecedented reduction in global economic and transport activity. In this study, variation in the concentration of health-threatening air pollutants (PM<sub>2.5</sub>, NO<sub>2</sub>, and O<sub>3</sub>) pre- and post-lockdown was investigated at global, continental, and national scales. We analyzed ground-based data from >10,000 monitoring stations in 380 cities across the globe. Global-scale results during lockdown (March to May 2020  ...[more]

Similar Datasets

| S-EPMC8926446 | biostudies-literature
| S-EPMC9450488 | biostudies-literature
| S-EPMC7980227 | biostudies-literature
| S-EPMC5517109 | biostudies-literature
| S-EPMC9670839 | biostudies-literature
| S-EPMC8160135 | biostudies-literature
| S-EPMC5093208 | biostudies-literature
| S-EPMC8326756 | biostudies-literature
| S-EPMC6488571 | biostudies-literature
| S-EPMC7751620 | biostudies-literature