Unknown

Dataset Information

0

A quantitative reward prediction error signal in the ventral pallidum.


ABSTRACT: The nervous system is hypothesized to compute reward prediction errors (RPEs) to promote adaptive behavior. Correlates of RPEs have been observed in the midbrain dopamine system, but the extent to which RPE signals exist in other reward-processing regions is less well understood. In the present study, we quantified outcome history-based RPE signals in the ventral pallidum (VP), a basal ganglia region functionally linked to reward-seeking behavior. We trained rats to respond to reward-predicting cues, and we fit computational models to predict the firing rates of individual neurons at the time of reward delivery. We found that a subset of VP neurons encoded RPEs and did so more robustly than the nucleus accumbens, an input to the VP. VP RPEs predicted changes in task engagement, and optogenetic manipulation of the VP during reward delivery bidirectionally altered rats' subsequent reward-seeking behavior. Our data suggest a pivotal role for the VP in computing teaching signals that influence adaptive reward seeking.

SUBMITTER: Ottenheimer DJ 

PROVIDER: S-EPMC7870109 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

A quantitative reward prediction error signal in the ventral pallidum.

Ottenheimer David J DJ   Bari Bilal A BA   Sutlief Elissa E   Fraser Kurt M KM   Kim Tabitha H TH   Richard Jocelyn M JM   Cohen Jeremiah Y JY   Janak Patricia H PH  

Nature neuroscience 20200810 10


The nervous system is hypothesized to compute reward prediction errors (RPEs) to promote adaptive behavior. Correlates of RPEs have been observed in the midbrain dopamine system, but the extent to which RPE signals exist in other reward-processing regions is less well understood. In the present study, we quantified outcome history-based RPE signals in the ventral pallidum (VP), a basal ganglia region functionally linked to reward-seeking behavior. We trained rats to respond to reward-predicting  ...[more]

Similar Datasets

| S-EPMC2564111 | biostudies-literature
| S-EPMC3593853 | biostudies-other
| S-EPMC7794503 | biostudies-literature
| S-EPMC9957971 | biostudies-literature
| S-EPMC3284694 | biostudies-literature
| S-EPMC6639146 | biostudies-literature
| S-EPMC5715768 | biostudies-literature
| S-EPMC3519929 | biostudies-literature
| S-EPMC10865898 | biostudies-literature
| S-EPMC6721851 | biostudies-literature