Unknown

Dataset Information

0

Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser.


ABSTRACT: Development of novel mid-infrared (MIR) lasers could ultimately boost emerging detection technologies towards innovative spectroscopic and imaging solutions. Photoacoustic (PA) modality has been heralded for years as one of the most powerful detection tools enabling high signal-to-noise ratio analysis. Here, we demonstrate a novel, compact and sensitive MIR-PA system for carbon dioxide (CO2) monitoring at its strongest absorption band by combining a gas-filled fiber laser and PA technology. Specifically, the PA signals were excited by a custom-made hydrogen (H2) based MIR Raman fiber laser source with a pulse energy of ? 18 ?J, quantum efficiency of ? 80% and peak power of ? 3.9 kW. A CO2 detection limit of 605 ppbv was attained from the Allan deviation. This work constitutes an alternative method for advanced high-sensitivity gas detection.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC7876039 | biostudies-literature | 2021 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser.

Wang Yazhou Y   Feng Yuyang Y   Adamu Abubakar I AI   Dasa Manoj K MK   Antonio-Lopez J E JE   Amezcua-Correa Rodrigo R   Markos Christos C  

Scientific reports 20210210 1


Development of novel mid-infrared (MIR) lasers could ultimately boost emerging detection technologies towards innovative spectroscopic and imaging solutions. Photoacoustic (PA) modality has been heralded for years as one of the most powerful detection tools enabling high signal-to-noise ratio analysis. Here, we demonstrate a novel, compact and sensitive MIR-PA system for carbon dioxide (CO<sub>2</sub>) monitoring at its strongest absorption band by combining a gas-filled fiber laser and PA techn  ...[more]

Similar Datasets

| S-EPMC6449389 | biostudies-literature
| S-EPMC6480174 | biostudies-literature
| S-EPMC8595695 | biostudies-literature
| S-EPMC8755826 | biostudies-literature
| S-EPMC4070560 | biostudies-other
| S-EPMC6539445 | biostudies-other