Unknown

Dataset Information

0

The effects of early-life growth hormone intervention on tissue specific histone H3 modifications in long-lived Ames dwarf mice.


ABSTRACT: Histone modifications, specifically in the lysine residues of histone H3, have been implicated in lifespan regulation in several model organisms. Our previous studies showed that growth hormone (GH) treatment during early life can dramatically influence lifespan in long-lived Ames dwarf mice. However, the effects of this hormonal intervention on epigenetic modifications have never been examined. In this study, we sought to compare tissue-specific histone H3 lysine methylation and acetylation markers in Ames dwarf and wild type (WT) mice and to determine how these markers are affected by early-life GH intervention. Ames dwarf mice exhibited suppressed H3K4me in both hepatic and brain tissues, while showing elevated H3K27me in the brain. Early-life GH intervention significantly altered the histone H3 markers in those tissues. Furthermore, early GH intervention increased expression of histone H3 acetylation at multiple lysine residues in a tissue-specific manner. This included changes in H3K14ac and H3K18ac in the liver and brain, H3K18ac in visceral adipose tissue and H3K9ac, H3K14ac and H3K27ac in subcutaneous adipose tissue. This study serves as an initial, but important step in elucidating the epigenetic mechanisms by which hormonal signals during early life can influence aging and longevity in mammals.

SUBMITTER: Zhang F 

PROVIDER: S-EPMC7880366 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The effects of early-life growth hormone intervention on tissue specific histone H3 modifications in long-lived Ames dwarf mice.

Zhang Fang F   Icyuz Mert M   Bartke Andrzej A   Sun Liou Y LY  

Aging 20201228 2


Histone modifications, specifically in the lysine residues of histone H3, have been implicated in lifespan regulation in several model organisms. Our previous studies showed that growth hormone (GH) treatment during early life can dramatically influence lifespan in long-lived Ames dwarf mice. However, the effects of this hormonal intervention on epigenetic modifications have never been examined. In this study, we sought to compare tissue-specific histone H3 lysine methylation and acetylation mar  ...[more]

Similar Datasets

| S-EPMC4252511 | biostudies-literature
| S-EPMC4693471 | biostudies-literature
| S-EPMC8811002 | biostudies-literature
| S-EPMC4417181 | biostudies-literature
| S-EPMC3302642 | biostudies-literature
| S-EPMC2844062 | biostudies-literature
| S-EPMC2657169 | biostudies-literature
| S-EPMC5397383 | biostudies-literature
| S-EPMC4693470 | biostudies-literature
2005-05-30 | E-MEXP-347 | biostudies-arrayexpress