Unknown

Dataset Information

0

SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene.


ABSTRACT: Numerous researches have focused on the genetic variations affecting SARS-CoV-2 infection, whereas the epigenetic effects are inadequately described. In this report, for the first time, we have identified potential candidate genes that might be regulated via SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, in silico transcriptomic data of COVID-19 lung autopsies were used to identify the top differentially expressed genes containing CpG Islands in their promoter region. Similar gene regulations were also observed in an in vitro model of SARS-CoV-2 infected lung epithelial cells (NHBE and A549). SARS-CoV-2 infection significantly decreased the levels of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B) in lung epithelial cells. Out of 14 candidate genes identified, the expression of 12 genes was upregulated suggesting promoter hypomethylation, while only two genes were downregulated suggesting promoter hypermethylation in COVID-19. Among those 12 upregulated genes, only HSPA1L and ULBP2 were found to be upregulated in AZA-treated lung epithelial cells and immune cells, suggesting their epigenetic regulation. To confirm the hypomethylation of these two genes during SARS-CoV-2 infection, their promoter methylation and mRNA expression levels were determined in the genomic DNA/RNA obtained from whole blood samples of asymptomatic, severe COVID-19 patients and equally matched healthy controls. The methylation level of HSPA1L was significantly decreased and the mRNA expression was increased in both asymptomatic and severe COVID-19 blood samples suggesting its epigenetic regulation by SARS-CoV-2 infection. Functionally, HSPA1L is known to facilitate host viral replication and has been proposed as a potential target for antiviral prophylaxis and treatment.

SUBMITTER: Muhammad JS 

PROVIDER: S-EPMC7933663 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

SARS-CoV-2 Infection-Induced Promoter Hypomethylation as an Epigenetic Modulator of Heat Shock Protein A1L (HSPA1L) Gene.

Muhammad Jibran Sualeh JS   Saheb Sharif-Askari Narjes N   Cui Zheng-Guo ZG   Hamad Mawieh M   Halwani Rabih R  

Frontiers in genetics 20210219


Numerous researches have focused on the genetic variations affecting SARS-CoV-2 infection, whereas the epigenetic effects are inadequately described. In this report, for the first time, we have identified potential candidate genes that might be regulated <i>via</i> SARS-CoV-2 induced DNA methylation changes in COVID-19 infection. At first, <i>in silico</i> transcriptomic data of COVID-19 lung autopsies were used to identify the top differentially expressed genes containing CpG Islands in their p  ...[more]

Similar Datasets

| S-EPMC3728325 | biostudies-literature
| S-EPMC7098389 | biostudies-literature
| S-EPMC5270254 | biostudies-literature
| S-SCDT-10_1038-S44318-024-00061-0 | biostudies-other
| S-EPMC8370058 | biostudies-literature
| 12454 | ecrin-mdr-crc
2013-07-31 | E-GEOD-47960 | biostudies-arrayexpress
2013-07-31 | E-GEOD-47961 | biostudies-arrayexpress
2013-07-31 | E-GEOD-47962 | biostudies-arrayexpress
| S-SCDT-EMBOJ-2020-106501 | biostudies-other