Project description:Pulmonary arterial hypertension (PAH) remains a severe clinical condition despite the availability over the past 15 years of multiple drugs interfering with the endothelin, nitric oxide and prostacyclin pathways. The recent progress observed in medical therapy of PAH is not, therefore, related to the discovery of new pathways, but to the development of new strategies for combination therapy and on escalation of treatments based on systematic assessment of clinical response. The current treatment strategy is based on the severity of the newly diagnosed PAH patient as assessed by a multiparametric risk stratification approach. Clinical, exercise, right ventricular function and haemodynamic parameters are combined to define a low-, intermediate- or high-risk status according to the expected 1-year mortality. The current treatment algorithm provides the most appropriate initial strategy, including monotherapy, or double or triple combination therapy. Further treatment escalation is required in case low-risk status is not achieved in planned follow-up assessments. Lung transplantation may be required in most advanced cases on maximal medical therapy.
Project description:The 2015 European pulmonary hypertension (PH) guidelines propose a risk stratification strategy for patients with pulmonary arterial hypertension (PAH). Low-, intermediate- and high-risk strata are defined by estimated 1-year mortality risks of <5%, 5-10% and >10%, respectively. This risk assessment strategy awaits validation.We analysed data from patients with newly diagnosed PAH enrolled into COMPERA (Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension), a European-based PH registry. An abbreviated version of the risk assessment strategy proposed by the European PH guidelines was applied, using the following variables: World Health Organization functional class, 6-min walking distance, brain natriuretic peptide or its N-terminal fragment, right atrial pressure, cardiac index and mixed venous oxygen saturation.Data from 1588 patients were analysed. Mortality rates were significantly different between the three risk strata (p<0.001 for all comparisons). In the entire patient population, the observed mortality rates 1?year after diagnosis were 2.8% in the low-risk cohort (n=196), 9.9% in the intermediate-risk cohort (n=1116) and 21.2% in the high-risk cohort (n=276). In addition, the risk assessment strategy proved valid at follow-up and in major PAH subgroups.An abbreviated version of the risk assessment strategy proposed by the current European PH guidelines provides accurate mortality estimates in patients with PAH.
Project description:Abstract Pulmonary arterial hypertension (PAH) is a cardiovascular disease with high mortality rate. Current guidelines propose initiation and escalation of PAH‐targeted treatment based on a goal‐directed approach targeting hemodynamic, functional, and biochemical variables. This approach has been successfully validated in large Caucasian cohorts. However, given the low number of Hispanic patients enrolled in large PAH trials and registries, it is unknown if the same prognostic tools can be applied to this patient population. We analyzed a single‐center outpatient cohort that consisted of 135 Hispanic patients diagnosed with PAH. Baseline characteristics were calculated based on COMPERA, COMPERA 2.0 and REVEAL 2.0 risk scores before the initiation of PAH‐targeted therapies. The survival rate at 1 year after diagnosis was 88% for the entire cohort. The three established risk scores to predict PAH outcomes yielded similar results with reasonable discrimination of mortality in the different risk strata (all p < 0.001). Hispanic patients with PAH have a high mortality rate. Our analysis suggests that guideline proposed risk assessment at baseline yields important prognostic information in this patient population.
Project description:BackgroundPrognosis in pulmonary arterial hypertension (PAH) is closely related to indexes of right ventricular function. A better understanding of their relationship may provide important implications for risk stratification in PAH.Research questionCan clinical network graphs inform risk stratification in PAH?Study design and methodsThe study cohort consisted of 231 patients with PAH followed up for a median of 7.1 years. An undirected, correlation network was used to visualize the relationship between clinical features in PAH. This network was enriched for right heart parameters and included N-terminal pro-hormone B-type natriuretic peptide (NT-proBNP), comprehensive echocardiographic parameters, and hemodynamics, as well as 6-min walk distance (6MWD), vital signs, laboratory data, and diffusing capacity for carbon monoxide (Dlco). Connectivity was assessed by using eigenvector and betweenness centrality to reflect global and regional connectivity, respectively. Cox proportional hazards regression was used to model event-free survival for the combined end point of death or lung transplantation.ResultsA network of closely intertwined features centered around NT-proBNP with 6MWD emerging as a secondary hub were identified. Less connected nodes included Dlco, systolic BP, albumin, and sodium. Over the follow-up period, death or transplantation occurred in 92 patients (39.8%). A strong prognostic model was achieved with a Harrell's C-index of 0.81 (0.77-0.85) when combining central right heart features (NT-proBNP and right ventricular end-systolic remodeling index) with 6MWD and less connected nodes (Dlco, systolic BP, albumin, sodium, sex, connective tissue disease etiology, and prostanoid therapy). When added to the baseline risk model, serial change in NT-proBNP significantly improved outcome prediction at 5 years (increase in C-statistic of 0.071 ± 0.024; P = .003).InterpretationNT-proBNP emerged as a central hub in the intertwined PAH network. Connectivity analysis provides explainability for feature selection and combination in outcome models.
Project description:Background: Given the morbidity and mortality associated with pulmonary arterial hypertension (PAH), risk stratification approaches that guide therapeutic management have been previously employed. However, most patients remain in the intermediate-risk category despite initial therapy. Herein, we sought to determine whether echocardiographic parameters could improve the risk stratification of intermediate-risk patients. Methods: Prevalent PAH patients previously enrolled in observational studies at 3 pulmonary hypertension centers were included in this study. A validated PAH risk stratification approach was used to stratify patients into low-, intermediate-, and high-risk groups. Right ventricular echocardiographic parameters were used to further stratify intermediate-risk patients into intermediate-low- and intermediate-high-risk groups based on transplant-free survival. Results: From a total of 146 patients included in our study, 38 patients died over a median follow-up of 2.5 years. Patients with intermediate-/high-risk had worse echocardiographic parameters. Tricuspid annular plane systolic excursion (TAPSE) and the degree of tricuspid regurgitation (TR) were highly associated with survival (p < 0.01, p = 0.04, respectively) and were subsequently used to further stratify intermediate-risk patients. Among intermediate-risk patients, survival was worse for patients with TAPSE < 19 mm compared to those with TAPSE ≥ 19 mm (estimated one-year survival 74% vs. 96%, p < 0.01) and for patients with moderate/severe TR compared to those with no/trace/mild TR (estimated one-year survival 70% vs. 93%, p < 0.01). Furthermore, among intermediate-risk patients, those with both TAPSE < 19 mm and moderate/severe TR had an estimated one-year survival (56%) similar to that of high-risk patients (56%), and those with both TAPSE ≥ 19 mm and no/trace/mild TR had an estimated one-year survival (97%) similar to that of low-risk patients (95%). Conclusions: Echocardiography, a routinely performed, non-invasive imaging modality, plays a pivotal role in discriminating distinct survival phenotypes among prevalent intermediate-risk PAH patients using TAPSE and degree of TR. This can potentially help guide subsequent therapy.
Project description:Pulmonary hypertension (PH) is a debilitating progressive disease characterized by increased pulmonary arterial pressures, leading to right ventricular (RV) failure, heart failure and, eventually, death. Based on the underlying conditions, PH patients can be subdivided into the following five groups: (1) pulmonary arterial hypertension (PAH), (2) PH due to left heart disease, (3) PH due to lung disease, (4) chronic thromboembolic PH (CTEPH), and (5) PH with unclear and/or multifactorial mechanisms. Currently, even with PAH-specific drug treatment, prognosis for PAH and CTEPH patients remains poor, with mean five-year survival rates of 57%-59% and 53%-69% for PAH and inoperable CTEPH, respectively. Therefore, more insight into the pathogenesis of PAH and CTEPH is highly needed, so that new therapeutic strategies can be developed. Recent studies have shown increased presence and activation of innate and adaptive immune cells in both PAH and CTEPH patients. Moreover, extensive biomarker research revealed that many inflammatory and immune markers correlate with the hemodynamics and/or prognosis of PAH and CTEPH patients. Increased evidence of the pathological role of immune cells in innate and adaptive immunity has led to many promising pre-clinical interventional studies which, in turn, are leading to innovative clinical trials which are currently being performed. A combination of immunomodulatory therapies might be required besides current treatment based on vasodilatation alone, to establish an effective treatment and prevention of progression for this disease. In this review, we describe the recent progress on our understanding of the involvement of the individual cell types of the immune system in PH. We summarize the accumulating body of evidence for inflammation and immunity in the pathogenesis of PH, as well as the use of inflammatory biomarkers and immunomodulatory therapy in PAH and CTEPH.
Project description:The aim of the present study was to determine contemporary survival in pulmonary arterial hypertension (PAH), and to investigate whether or not the National Institutes of Health (NIH) equation remains an accurate predictor of survival. In 576 patients with PAH referred during 1991-2007, observed survival was described using the Kaplan-Meier method. In patients with idiopathic, familial and anorexigen-associated PAH (n = 247), observed versus NIH equation predicted survival was compared. A new survival prediction equation was developed using exponential regression analysis. The observed 1-, 3- and 5-yr survival in the total cohort were 86, 69 and 61%, respectively. In patients with idiopathic, familial and anorexigen-associated PAH, the observed 1-, 3- and 5-yr survival (92, 75 and 66%, respectively) were significantly higher than the predicted survival (65, 43 and 32%, respectively). The new equation (P(t) = e(-A(x,y,z)t), where P(t) is probability of survival, t the time interval in years, A(x,y,z) = e((-1.270-0.0148x+0.0402y-0.361z)), x the mean pulmonary artery pressure, y the mean right atrial pressure and z the cardiac index) performed well when applied to published contemporary studies of survival in PAH. Contemporary survival in the PAH cohort was better than that predicted by the NIH registry equation. The NIH equation underestimated survival in idiopathic, familial and anorexigen-associated PAH. Once prospectively validated, the new equation may be used to determine prognosis.
Project description:Rationale: Pulmonary arterial hypertension (PAH) is a life-shortening condition. The European Society of Cardiology and European Respiratory Society and the REVEAL (North American Registry to Evaluate Early and Long-Term PAH Disease Management) risk score calculator (REVEAL 2.0) identify thresholds to predict 1-year mortality.Objectives: This study evaluates whether cardiac magnetic resonance imaging (MRI) thresholds can be identified and used to aid risk stratification and facilitate decision-making.Methods: Consecutive patients with PAH (n = 438) undergoing cardiac MRI were identified from the ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral Center) MRI database. Thresholds were identified from a discovery cohort and evaluated in a test cohort.Measurements and Main Results: A percentage-predicted right ventricular end-systolic volume index threshold of 227% or a left ventricular end-diastolic volume index of 58 ml/m2 identified patients at low (<5%) and high (>10%) risk of 1-year mortality. These metrics respectively identified 63% and 34% of patients as low risk. Right ventricular ejection fraction >54%, 37-54%, and <37% identified 21%, 43%, and 36% of patients at low, intermediate, and high risk, respectively, of 1-year mortality. At follow-up cardiac MRI, patients who improved to or were maintained in a low-risk group had a 1-year mortality <5%. Percentage-predicted right ventricular end-systolic volume index independently predicted outcome and, when used in conjunction with the REVEAL 2.0 risk score calculator or a modified French Pulmonary Hypertension Registry approach, improved risk stratification for 1-year mortality.Conclusions: Cardiac MRI can be used to risk stratify patients with PAH using a threshold approach. Percentage-predicted right ventricular end-systolic volume index can identify a high percentage of patients at low-risk of 1-year mortality and, when used in conjunction with current risk stratification approaches, can improve risk stratification. This study supports further evaluation of cardiac MRI in risk stratification in PAH.