Unknown

Dataset Information

0

Vitrification of particulated articular cartilage via calculated protocols.


ABSTRACT: Preserving viable articular cartilage is a promising approach to address the shortage of graft tissue and enable the clinical repair of articular cartilage defects in articulating joints, such as the knee, ankle, and hip. In this study, we developed two 2-step, dual-temperature, multicryoprotectant loading protocols to cryopreserve particulated articular cartilage (cubes ~1 mm3 in size) using a mathematical approach, and we experimentally measured chondrocyte viability, metabolic activity, cell migration, and matrix productivity after implementing the designed loading protocols, vitrification, and warming. We demonstrated that porcine and human articular cartilage cubes can be successfully vitrified and rewarmed, maintaining high cell viability and excellent cellular function. The vitrified particulated articular cartilage was stored for a period of 6 months with no significant deterioration in chondrocyte viability and functionality. Our approach enables high-quality long-term storage of viable articular cartilage that can alleviate the shortage of grafts for use in clinically repairing articular cartilage defects.

SUBMITTER: Wu K 

PROVIDER: S-EPMC7979917 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitrification of particulated articular cartilage via calculated protocols.

Wu Kezhou K   Shardt Nadia N   Laouar Leila L   Elliott Janet A W JAW   Jomha Nadr M NM  

NPJ Regenerative medicine 20210319 1


Preserving viable articular cartilage is a promising approach to address the shortage of graft tissue and enable the clinical repair of articular cartilage defects in articulating joints, such as the knee, ankle, and hip. In this study, we developed two 2-step, dual-temperature, multicryoprotectant loading protocols to cryopreserve particulated articular cartilage (cubes ~1 mm<sup>3</sup> in size) using a mathematical approach, and we experimentally measured chondrocyte viability, metabolic acti  ...[more]

Similar Datasets

| S-EPMC9630855 | biostudies-literature
| S-EPMC7455568 | biostudies-literature
| S-EPMC4175163 | biostudies-literature
| S-EPMC9353158 | biostudies-literature
2012-03-04 | PRD000359 | Pride
2021-03-01 | PXD019431 | Pride
| S-EPMC3717153 | biostudies-literature
| S-EPMC2966351 | biostudies-literature
| S-EPMC10076019 | biostudies-literature
| S-EPMC3038242 | biostudies-literature