Project description:The Delta variant of concern of severe acute respiratory syndrome coronavirus 2 is dominant worldwide. We report a case cluster caused by Delta sublineage B.1.617.2 harboring the mutation E484K in Italy during July 11-July 29, 2021. This mutation appears to affect immune response and vaccine efficacy; monitoring its appearance is urgent.
Project description:Spike protein mutations E484K and N501Y carried by SARS-CoV-2 variants have been associated with concerning changes of the virus, including resistance to neutralizing antibodies and increased transmissibility. While the concerning variants are fast spreading in various geographical areas, identification and monitoring of these variants are lagging far behind, due in large part to the slow speed and insufficient capacity of viral sequencing. In response to the unmet need for a fast and efficient screening tool, we developed a single-tube duplex molecular assay for rapid and simultaneous identification of E484K and N501Y mutations from nasopharyngeal swab (NS) samples within 2.5 h from sample preparation to report. Using this tool, we screened a total of 1135 clinical NS samples collected from COVID patients at 8 hospitals within the Hackensack Meridian Health network in New Jersey between late December 2020 and March 2021. Our data revealed dramatic increases in the frequencies of both E484K and N501Y over time, underscoring the need for continuous epidemiological monitoring.
Project description:Although the current coronavirus disease 2019 (COVID-19) vaccines have been used worldwide to halt spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the emergence of new SARS-CoV-2 variants with E484K mutation shows significant resistance to the neutralization of vaccine sera. To better understand the resistant mechanism, we calculated the binding affinities of 26 antibodies to wild-type (WT) spike protein and to the protein harboring E484K mutation, respectively. The results showed that most antibodies (~85%) have weaker binding affinities to the E484K mutated spike protein than to the WT, indicating the high risk of immune evasion of the mutated virus from most of current antibodies. Binding free energy decomposition revealed that the residue E484 forms attraction with most antibodies, while the K484 has repulsion from most antibodies, which should be the main reason of the weaker binding affinities of E484K mutant to most antibodies. Impressively, a monoclonal antibody (mAb) combination was found to have much stronger binding affinity with E484K mutant than WT, which may work well against the mutated virus. Based on binding free energy decomposition, we predicted that the mutation of four more residues on receptor-binding domain (RBD) of spike protein, viz., F490, V483, G485 and S494, may have high risk of immune evasion, which we should pay close attention on during the development of new mAb therapeutics.
Project description:ObjectivesSurveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic epidemiology led us to detect several variants since summer 2020. We report the recent spread of a new SARS-CoV-2 spike 501Y variant.MethodsSARS-CoV-2 sequences obtained from human nasopharyngeal samples by Illumina next-generation sequencing were analysed using Nextclade and an in-house Python script and were compared using BLASTn to the GISAID database. Phylogeny was investigated using the IQ-TREE software.ResultsWe identified that SARS-CoV-2 genomes from four patients diagnosed in our institute harboured a new set of amino acid substitutions including L18F, L452R, N501Y, A653V, H655Y, D796Y, G1219V ± Q677H. These spike N501Y genomes are the first of Nextstrain clade 19B. We obtained partial spike gene sequences of this genotype for an additional 43 patients. All patients infected with this genotype were diagnosed since mid-January 2021. We detected 42 other genomes of this genotype in GISAID, which were obtained from samples collected in December 2020 in four individuals and in 2021 in 38 individuals. The 89 sequences obtained in our institute or other laboratories originated from the Comoros archipelago, western European countries (mostly metropolitan France), Turkey and Nigeria.ConclusionThese findings warrant further studies to investigate the spread, epidemiological and clinical features, and sensitivity to immune responses of this variant.
Project description:The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic in Brazil was dominated by two lineages designated as B.1.1.28 and B.1.1.33. The two SARS-CoV-2 variants harboring mutations at the receptor-binding domain of the Spike (S) protein, designated as lineages P.1 and P.2, evolved from lineage B.1.1.28 and are rapidly spreading in Brazil. Lineage P.1 is considered a Variant of Concern (VOC) because of the presence of multiple mutations in the S protein (including K417T, E484K, N501Y), while lineage P.2 only harbors mutation S:E484K and is considered a Variant of Interest (VOI). On the other hand, epidemiologically relevant B.1.1.33 deriving lineages have not been described so far. Here we report the identification of a new SARS-CoV-2 VOI within lineage B.1.1.33 that also harbors mutation S:E484K and was detected in Brazil between November 2020 and February 2021. This VOI displayed four non-synonymous lineage-defining mutations (NSP3:A1711V, NSP6:F36L, S:E484K, and NS7b:E33A) and was designated as lineage N.9. The VOI N.9 probably emerged in August 2020 and has spread across different Brazilian states from the Southeast, South, North, and Northeast regions.
Project description:SARS-CoV-2 variants have become a major virological, epidemiological, and clinical concern, particularly with regard to the risk of escape from vaccine-induced immunity. Here, we describe the emergence of a new variant, with the index case returning from travel in Cameroon. For 13 SARS-CoV-2-positive patients living in the same geographical area of southeastern France, a qPCR test for screening variant-associated mutations showed an atypical combination. The genome sequences were obtained by next-generation sequencing with Oxford Nanopore Technologies on GridION instruments within about 8 h. Analysis revealed 46 nucleotide substitutions and 37 deletions, resulting in 30 amino acid substitutions and 12 deletions. Fourteen of the amino acid substitutions, including N501Y and E484K, and nine deletions are located in the spike protein. This genotype pattern led to the establishment of a new Pangolin lineage, named B.1.640.2, that is a phylogenetic sister group to the old B.1.640 lineage, which has now been renamed B.1.640.1. The lineages differ by 25 nucleotide substitutions and 33 deletions. The combination of mutations in these isolates and their phylogenetic position indicate, based on our previous definition, that they represent a new variant, which we have named "IHU". These data are a further example of the unpredictability of the emergence of SARS-CoV-2 variants, and of their possible introduction into a given geographical area from abroad.
Project description:We aimed to investigate novel emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages in Japan that harbor variants in the spike protein receptor-binding domain (RBD). The total nucleic acid contents of samples from 159 patients with coronavirus disease 2019 (COVID-19) were subjected to whole genome sequencing. The SARS-CoV-2 genome sequences from these patients were examined for variants in spike protein RBD. In January 2021, three family members (one aged in their 40s and two aged under 10 years old) were found to be infected with SARS-CoV-2 harboring W152L/E484K/G769V mutations. These three patients were living in Japan and had no history of traveling abroad. After identifying these cases, we developed a TaqMan assay to screen for the above hallmark mutations and identified an additional 14 patients with the same mutations. The associated virus strain was classified into the GR clade (Global Initiative on Sharing Avian Influenza Data [GISAID]), 20B clade (Nextstrain), and R.1 lineage (Phylogenetic Assignment of Named Global Outbreak [PANGO] Lineages). As of April 22, 2021, R.1 lineage SARS-CoV-2 has been identified in 2,388 SARS-CoV-2 entries in the GISAID database, many of which were from Japan (38.2%; 913/2,388) and the United States (47.1%; 1,125/2,388). Compared with that in the United States, the percentage of SARS-CoV-2 isolates belonging to the R.1 lineage in Japan increased more rapidly over the period from October 24, 2020 to April 18, 2021. R.1 lineage SARS-CoV-2 has potential escape mutations in the spike protein RBD (E484K) and N-terminal domain (W152L); therefore, it will be necessary to continue to monitor the R.1 lineage as it spreads around the world.
Project description:SARS-CoV2 mutants B.1.1.7, B.1.351, and P.1 contain a key mutation N501Y. B.1.135 and P.1 lineages have another mutation, E484K. Here, we decode the effect of these two mutations on the host receptor, ACE2, and neutralizing antibody (B38) recognition. The N501Y RBD mutant binds to ACE2 with higher affinity due to improved π-π stacking and π-cation interactions. The higher binding affinity of the E484K mutant is caused due to the formation of additional hydrogen bond and salt-bridge interactions with ACE2. Both the mutants bind to the B38 antibody with reduced affinity due to the loss of several hydrogen-bonding interactions. The insights obtained from the study are crucial to interpret the increased transmissibility and reduced neutralization efficacy of rapidly emerging SARS-CoV2 VOCs.
Project description:We engineered three SARS-CoV-2 viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion+N501Y+D614G from UK; and E484K+N501Y+D614G from SA. Neutralization geometric mean titers (GMTs) of twenty BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses.