Unknown

Dataset Information

0

Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway.


ABSTRACT: Somatic mutations of ASXL1 are frequently detected in age-related clonal hematopoiesis (CH). However, how ASXL1 mutations drive CH remains elusive. Using knockin (KI) mice expressing a C-terminally truncated form of ASXL1-mutant (ASXL1-MT), we examined the influence of ASXL1-MT on physiological aging in hematopoietic stem cells (HSCs). HSCs expressing ASXL1-MT display competitive disadvantage after transplantation. Nevertheless, in genetic mosaic mouse model, they acquire clonal advantage during aging, recapitulating CH in humans. Mechanistically, ASXL1-MT cooperates with BAP1 to deubiquitinate and activate AKT. Overactive Akt/mTOR signaling induced by ASXL1-MT results in aberrant proliferation and dysfunction of HSCs associated with age-related accumulation of DNA damage. Treatment with an mTOR inhibitor rapamycin ameliorates aberrant expansion of the HSC compartment as well as dysregulated hematopoiesis in aged ASXL1-MT KI mice. Our findings suggest that ASXL1-MT provokes dysfunction of HSCs, whereas it confers clonal advantage on HSCs over time, leading to the development of CH.

SUBMITTER: Fujino T 

PROVIDER: S-EPMC7988019 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2021-02-08 | MSV000086816 | MassIVE
| S-EPMC6540875 | biostudies-literature
| S-EPMC2995996 | biostudies-literature
| S-EPMC10998749 | biostudies-literature
| S-EPMC4558510 | biostudies-literature
| S-EPMC5998191 | biostudies-literature
| S-EPMC5989854 | biostudies-literature
| S-EPMC4313872 | biostudies-literature
| S-EPMC9018718 | biostudies-literature
2022-09-12 | GSE212914 | GEO