Project description:Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load beads into a microfluidic droplet generator. A suspension hopper continuously delivered synthesis resin beads (17 μm diameter, 112,000 over 2.67 h) functionalized with a photolabile linker and pepstatin A into picoliter-scale droplets of an HIV-1 protease activity assay to model ultraminiaturized compound screening. Likewise, trypsinogen template DNA-coated magnetic beads (2.8 μm diameter, 176,000 over 5.5 h) were loaded into droplets of an in vitro transcription/translation system to model a protein evolution experiment. The suspension hopper should effectively remove any barriers to using suspensions as sample inputs, paving the way for microfluidic automation to replace robotic library distribution.
Project description:The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (?6.5 ± 1.8 ?m/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.
Project description:5 rats were offered food containing 40mM Li/Kg dry weight for 4 weeks, and 5 control rats obtained standard food. The RNA from the inner medulla of the Li-treated rats was labeled red (channel 1), and from the control rats labeled green (channel 2). The samples from Li-treated rats 1+2 and control rats 1+2 were hybridized to array Li-NDI 1. The samples from Li-treated rats 3+4 and control rats 3+4 were hybridized to array Li-NDI 2. The samples from Li-treated rat 5 and control rat 5 were hybridized to array Li-NDI 3. Keywords: parallel sample
Project description:Here we use phase field to model and simulate "hopper" crystals, so named because of their underlying cubic structure but with a hopper-like depression on each of the six faces. Over the past three decades simulations of single phase solidification have successfully explored dendritic structures, in two and three dimensions, formed under high undercooling from a slight perturbation in anisotropy. More recently we see the modelling of faceted structures at near equilibrium, and also, under high undercooling, the formation of dendritic-like structures in two dimensions which retain some faceting in the dendrite arms. A cubic hopper crystal appears to be a hybrid structure, somewhere between a perfect cube and a dendrite, and, to date, has not appeared in the modelling literature. In this paper we describe a model for faceted cubic growth and explore results, necessarily in three dimensions, that include perfect cube, hopper and dendritic. We also touch briefly on one other morphology-octahedral.
Project description:Crustacean amphipods are important trophic links between primary producers and higher consumers. Although most amphipods occur in or around aquatic environments, the family Talitridae is the only family found in terrestrial and semi-terrestrial habitats. The sand-hopper Trinorchestia longiramus is a talitrid species often found in the sandy beaches of South Korea. In this study, we present the first draft genome assembly and annotation of this species. We generated ~380.3 Gb of sequencing data assembled in a 0.89 Gb draft genome. Annotation analysis estimated 26,080 protein-coding genes, with 89.9% genome completeness. Comparison with other amphipods showed that T. longiramus has 327 unique orthologous gene clusters, many of which are expanded gene families responsible for cellular transport of toxic substances, homeostatic processes, and ionic and osmotic stress tolerance. This first talitrid genome will be useful for further understanding the mechanisms of adaptation in terrestrial environments, the effects of heavy metal toxicity, as well as for studies of comparative genomic variation across amphipods.
Project description:5 rats were offered food containing 40mM Li/Kg dry weight for 4 weeks, and 5 control rats obtained standard food. The RNA from the inner medulla of the Li-treated rats was labeled red (channel 1), and from the control rats labeled green (channel 2). The samples from Li-treated rats 1+2 and control rats 1+2 were hybridized to array Li-NDI 1. The samples from Li-treated rats 3+4 and control rats 3+4 were hybridized to array Li-NDI 2. The samples from Li-treated rat 5 and control rat 5 were hybridized to array Li-NDI 3.
Project description:Sodium chloride (NaCl) grown in terrestrial conditions form hopper cubes under diffusion controlled mass transport (Péclet number: ≪ 1), high supersaturations (S > 1.45), and fast growth rates (10-110 µm/s) over periods only maintainable for seconds to minutes yielding hopper cubes typically <250 µm. Here we report on NaCl hopper cubes grown in microgravity on the International Space Station (ISS) by evaporation of brine. They grew under diffusion limited mass transport (Péclet number: ~4 × 10-4 - 4) at low supersaturation (S < 1.002) and slow growth rates (0.34-1 µm/min) over periods of days to weeks. Due to the lack of sedimentation, symmetrical hopper cubes, 2-8 mm were produced. The most striking differences between microgravity and terrestrial gravity hopper growth conditions are low supersaturation and slow growth rates over long periods of time. Large, 1-20 cm naturally occurring symmetrical NaCl hopper cubes are found suspended in brine soaked mud, hypothesized to be produced in a slow growth, diffusion dominated environment. We speculate these geologic conditions allow for hopper growth similar to that of microgravity.
Project description:Ongoing intensification of rice production systems in Southeast Asia is causing devastating yield losses each year due to rice hoppers. Their continuing development of immunity to resistant rice varieties and pesticide applications further complicates this problem. Hence, there is a high demand for biological control agents of rice hoppers. Egg parasitoid wasps are among the most important natural enemies of rice hoppers, such as Nilaparvata lugens and Nephotettix spp. However, our knowledge of their diversity is still very limited, due to their small size and the lack of available morphological information. Classifying these parasitoids is the first step to properly understanding their role in the rice agroecosystem. We used traditional morphological identification, as well as DNA sequencing of the 28S rRNA and the COI genes, to investigate the diversity of four important hopper egg parasitoid genera in the Philippines. Parasitoids of the genera Anagrus, Oligosita, Gonatocerus, and Paracentrobia were collected in eight study landscapes located in Luzon. Our findings illustrate that characterization of species diversity using morphological and molecular analyses were concordant only for the genus Paracentrobia. The genera Anagrus and Gonatocerus exhibited more genetic diversity than estimated with the morphological analysis, while the opposite was observed for Oligosita. This is the first study investigating the molecular diversity of rice hopper parasitoids in the Philippines. More research combining morphological, behavioral, and molecular methods, as well as the establishment of a comprehensive DNA database, are urgently needed to assess the performance and suitability of these organisms as biocontrol agents.
Project description:The six known specimens of Scleromochlus taylori and casts made from their negative impressions were examined to reassess the osteological evidence that has been used to interpret Scleromochlus's locomotion and phylogenetic relationships. It was found that the trunk was dorsoventrally compressed. The upper temporal fenestra was on the lateral surface of skull and two-thirds the size of the lower, the jaw joint posteriorly placed with short retroarticular process, and teeth short and subconical, but no evidence of external nares or antorbital fossae was found. The posterior trunk was covered with ~20 rows of closely spaced transversely elongate dorsal osteoderms. The coracoid was robust and elongate. The acetabulum was imperforate and the femoral head hemispherical and only weakly inturned such that the hip joint was unsuited to swinging in a parasagittal plane. The presence of four distal tarsals is confirmed. The marked disparity of tibial and fibular shaft diameters and of proximal tarsal dimensions indicates that the larger proximal tarsal is the astragalus and the significantly smaller tarsal is the calcaneum. The astragalus and calcaneum bear little resemblance to those of Lagosuchus, and the prominent calcaneal tuber confirms that the ankle was crurotarsal. There is no evidence that preserved body and limb postures are unnatural, and most specimens are preserved in what is interpreted as a typical sprawling resting pose. A principal component analysis of skeletal measurements of Scleromochlus and other vertebrates of known locomotor type found Scleromochlus to plot with frogs, and that finding combined with skeletal morphology suggests Scleromochlus was a sprawling quadrupedal hopper. Phylogenetic analyses found that Scleromochlus was not an ornithodiran, but was either within the Doswelliidae or outside the clade consisting of the most recent common ancestor of the Erythrosuchidae and Archosauria and all its descendants.