Project description:Revealing the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and cell-to-cell spread might provide insights for understanding the underlying mechanisms of viral pathogenesis, tropism, and virulence. The signaling pathways involved in SARS-CoV-2 entry and viral spike-mediated cell-to-cell fusion remain elusive. In the current study, we found that macropinocytosis inhibitors significantly suppressed SARS-CoV-2 infection at both the entry and viral spike-mediated cell-to-cell fusion steps. We demonstrated that SARS-CoV-2 entry required the small GTPase Rac1 and its effector kinase p21-activated kinase 1 by dominant-negative and RNAi assays in human embryonic kidney 293T-angiotensin-converting enzyme 2 cells and that the serine protease transmembrane serine protease 2 reversed the decrease in SARS-CoV-2 entry caused by the macropinocytosis inhibitors. Moreover, in the cell-to-cell fusion assay, we confirmed that macropinocytosis inhibitors significantly decreased viral spike-mediated cell-to-cell fusion. Overall, we provided evidence that SARS-CoV-2 utilizes a macropinocytosis pathway to enter target cells and to efficiently promote viral spike-mediated cell-to-cell fusion.
Project description:Severe acute respiratory syndrome virus 2 (SARS-CoV-2) invades host cells by interacting with receptors/coreceptors, as well as with other cofactors, via its spike (S) protein that further mediates fusion between viral and cellular membranes. The host membrane protein, angiotensin-converting enzyme 2 (ACE2), is the major receptor for SARS-CoV-2 and is a crucial determinant for cross-species transmission. In addition, some auxiliary receptors and cofactors are also involved that expand the host/tissue tropism of SARS-CoV-2. After receptor engagement, specific proteases are required that cleave the S protein and trigger its fusogenic activity. Here we discuss the recent advances in understanding the molecular events during SARS-CoV-2 entry which will contribute to developing vaccines and therapeutics.
Project description:While studying the human public IgM igome as represented by a library of 224,087 linear mimotopes, three exact matches to peptides in the proteins of SARS-CoV-2 were found: two in the open reading frame 1ab and one in the spike protein. Joining the efforts to fast track SARS-CoV-2 vaccine development, here we describe briefly these potential epitopes in comparison to mimotopes representing peptides of SARS-CoV, HCoV 229E and OC43.
Project description:The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Project description:Identification of risk factors for contracting and developing serious illness following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of paramount interest. Here, we performed a retrospective cohort analysis of all Danish individuals tested for SARS-CoV-2 between 27 February 2020 and 30 July 2020, with a known ABO and RhD blood group, to determine the influence of common blood groups on virus susceptibility. Distribution of blood groups was compared with data from nontested individuals. Participants (29% of whom were male) included 473 654 individuals tested for SARS-CoV-2 using real-time polymerase chain reaction (7422 positive and 466 232 negative) and 2 204 742 nontested individuals, accounting for ∼38% of the total Danish population. Hospitalization and death from COVID-19, age, cardiovascular comorbidities, and job status were also collected for confirmed infected cases. ABO blood groups varied significantly between patients and the reference group, with only 38.41% (95% confidence interval [CI], 37.30-39.50) of the patients belonging to blood group O compared with 41.70% (95% CI, 41.60-41.80) in the controls, corresponding to a relative risk of 0.87 (95% CI, 0.83-0.91) for acquiring COVID-19. This study identifies ABO blood group as a risk factor for SARS-CoV-2 infection but not for hospitalization or death from COVID-19.
Project description:An association between certain ABO/Rh blood groups and susceptibility to SARS-CoV-2 infection has been proposed for adults, although this remains controversial. In children and adolescents, the relationship is unclear due to a lack of robust data. Here, we investigated the association of ABO/Rh blood groups and SARS-CoV-2 in a multi-center study comprising 163 households with 281 children and 355 adults and at least one SARS-CoV-2 seropositive individual as determined by three independent assays as a proxy for previous infection. In line with previous findings, we found a higher frequency of blood group A (+ 6%) and a lower frequency of blood group O (-6%) among the SARS-CoV-2 seropositive adults compared to the seronegative ones. This trend was not seen in children. In contrast, SARS-CoV-2 seropositive children had a significantly lower frequency of Rh-positive blood groups. ABO compatibility did not seem to play a role in SARS-CoV-2 transmission within the families. A correction for family clusters was performed and estimated fixed effects of the blood group on the risk of SARS-CoV-2 seropositivity and symptomatic infection were determined. Although we found a different distribution of blood groups in seropositive individuals compared to the reference population, the risk of SARS-CoV-2 seropositivity or symptomatic infection was not increased in children or in adults with blood group A or AB versus O or B. Increasing age was the only parameter positively correlating with the risk of SARS-CoV-2 infection. In conclusion, specific ABO/Rh blood groups and ABO compatibility appear not to predispose for SARS-CoV-2 susceptibility in children.
Project description:SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.
Project description:CD8 T cells from human donors were sorted with peptide-MHC multimers based on SARS-Cov-2 epitopes. For each donor the alpha and beta chains were sequenced separately